

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Bauble 1.0.48 documentation

Documentation for Bauble 1.0

[image: https://travis-ci.org/Bauble/bauble.classic.svg?branch=bauble-1.0]
Bauble is an application for managing botanical specimen collections.
With it you can create a searchable database of plant records.

It is open [http://www.opensource.org] and free [http://www.fsf.org]
and is released under the GNU Public License [http://www.fsf.org/licensing/licenses/gpl.html]

	not-so-brief list of highlights, meant to whet your appetite.

Installing Bauble

	Installation
	Installing on Linux

	Installing on MacOSX

	Installing on Windows

	Troubleshooting the Install

Using Bauble

	Getting Started
	Connecting to a database

	Creating a new database

	Searching in Bauble
	Search Strategies

	The Query Builder

	Editing and Inserting Data
	Notes

	Family

	Genus

	Species/Taxon

	Accessions

	Plant

	Locations

	Tagging

	Generating reports
	Using the Mako Report Formatter

	Using the XSL Report Formatter

	Importing and Exporting Data
	Importing from CSV

	Exporting to CSV

	Importing from JSON

	Exporting to JSON

	Managing Users
	Creating Users

	Permissions

Administration

	Administration
	SQLite

	MySQL

	PostgreSQL

Bauble Development

	Downloading the source

	Building the source
	Building (on Windows)

	Extending Bauble with Plugins

	API Documentation
	bauble

	bauble.db

	bauble.connmgr

	bauble.editor

	bauble.i18n

	bauble.ui

	bauble.meta

	bauble.paths

	bauble.pluginmgr

	bauble.prefs

	bauble.task

	bauble.types

	bauble.utils

	bauble.view

	bauble.search

	bauble.plugins.plants

	bauble.plugins.garden

	bauble.plugins.abcd

	bauble.plugins.imex

	bauble.plugins.report

	bauble.plugins.report.xsl

	bauble.plugins.report.mako

	bauble.plugins.tag

Supporting Bauble

[image: https://pledgie.com/campaigns/29188.png]
If you’re using Bauble, or if you feel like helping its development anyway,
please consider donating [https://pledgie.com/campaigns/29188]

 Copyright 2004-2012, Brett Adams; 2012-2015, Mario Frasca.
 Last updated on Aug 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0.48 documentation

not-so-brief list of highlights, meant to whet your appetite.

taxonomic information

When you first start Bauble, and connect to a database, Bauble will
initialize the database not only with all tables it needs to run, but it
will also populate the taxon tables for ranks family and genus, using the
data from the “RBG Kew’s Family and Genera list from Vascular Plant Families
and Genera compiled by R. K. Brummitt and published by the Royal Botanic
Gardens, Kew in 1992”. In 2015 we have reviewed the data regarding the
Orchidaceae, using “Tropicos, botanical information system at the Missouri
Botanical Garden - www.tropicos.org” as a source.

importing data

Bauble will let you import any data you put in an intermediate json
format. What you import will complete what you already have in the
database. If you need help, you can ask some Bauble professional to help you
transform your data into Bauble’s intermediate json format.

synonyms

Bauble will allow you define synonyms for species, genera, families. Also
this information can be represented in its intermediate json format and be
imported in an existing Bauble database.

scientific responsible

Bauble implements the concept of ‘accession’, intermediate between physical
plant (or a group thereof) and abstract taxon. Each accession can associate
the same plants to different taxa, if two taxonomists do not agree on the
identification: each taxonomist can have their say and do not need overwrite
each other’s work. All verifications can be found back in the database, with
timestamp and signature.

helps off-line identification

Bauble allows you associate pictures to physical plants, this can help
recognize the plant in case a sticker is lost, or help taxonomic
identification if a taxonomist is not available at all times.

exports and reports

Bauble will let you export a report in whatever textual format you need. It
uses a powerful templating engine named ‘mako’, which will allow you export
the data in a selection to whatever format you need. Once installed, a
couple of examples are available in the mako subdirectory.

annotate your info

You can associate notes to plants, accessions, species, Notes can be
categorized and used in searches or reports.

garden or herbarium

Management of plant locations.

database history

All changes in the database is stored in the database, as history log. All
changes are ‘signed’ and time-stamped. Bauble makes it easy to retrieve the
list of all changes in the last working day or week, or in any specific
period in the past.

simple and powerful search

Bauble allows you search the database using simple keywords, e.g.: the name
of the location or a genus name, or you can write more complex queries,
which do not reach the complexity of SQL but allow you a decent level of
detail localizing your data.

database agnostic

Bauble is not a database management system, so it does not reinvent the
wheel. It works storing its data in a SQL database, and it will connect to
any database management system which accepts a SQLAlchemy connector. This
means any reasonably modern database system and includes MySQL, PostgreSQL,
Oracle. It can also work with sqlite, which, for single user purposes is
quite sufficient and efficient. If you connect Bauble to a real database
system, you can consider making the database part of a LAMP system
(Linux-Apache-MySQL-Php) and include your live data on your institution web
site.

language agnostic

The program was born in English and all its technical and user documentation
is still only in that language, but the program itself has been translated
and can be used in various other languages, including Spanish (86%),
Portuguese (100%), French (42%), to name some Southern American languages,
as well as Swedish (100%) and Czech (100%).

platform agnostic

Installing Bauble on Windows is an easy and linear process, it will not take
longer than 10 minutes. Bauble was born on Linux and installing it on
ubuntu, fedora or debian is also rather simple. It has been recently
successfully tested on MacOSX 10.9.

easily updated

The installation process will produce an updatable installation, where
updating it will take less than one minute. Depending on the amount of
feedback we receive, we will produce updates every few days or once in a
while.

unit tested

Bauble is continuously and extensively unit tested, something that makes
regression of functionality close to impossible. Every update is
automatically quality checked, on the Travis Continuous Integration
service. Integration of TravisCI with the github platform will make it
difficult for us to release anything which has a single failing unit test.

Most changes and additions we make, come with some extra unit test, which
defines the behaviour and will make any undesired change easily visible.

customizable/extensible

Bauble is extensible through plugins and can be customized to suit the needs
of the institution.

 Copyright 2004-2012, Brett Adams; 2012-2015, Mario Frasca.
 Last updated on Aug 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0.48 documentation

Installation

bauble.classic is a cross-platform program and it will run on unix machines
like Linux and MacOSX, as well as on Windows.

To install Bauble first requires that you install its dependencies that
cannot be installed automatically. These include virtualenvwrapper, PyGTK
and pip. Python and GTK+, you probably already have. As long as you have
these packages installed then Bauble should be able to install the rest of
its dependencies by itself.

Note

If you follow these installation steps, you will end with Bauble
running within a Python virtual environment, all Python
dependencies installed locally, non conflicting with any other
Python program you may have on your system.

if you later choose to remove Bauble, you simply remove the
virtual environment, which is a directory, with all of its
content.

Installing on Linux

	Download the devinstall.sh script and run it:

https://raw.githubusercontent.com/Bauble/bauble.classic/master/scripts/devinstall.sh

Please not that the script will not help you install any extra database
connector. This you will do in a later step.

You can study the script to see what steps if runs for you. In short it
will install dependencies which can’t be satisfied in a virtual
environment, then it will create a virtual environment named bacl,
download the sources and connect your git checkout to the bauble-1.0
branch (this you can consider a production line), it then builds bauble,
downloading all remaining dependencies, and finally it creates a startup
script in your ~/bin folder.

If the script ends without error, you can now start bauble:

~/bin/bauble

or update bauble to the latest released production patch:

~/bin/bauble -u

The same script you can use to switch to a different production line, but
at the moment there’s only bauble-1.0.

	on Unity, open a terminal, start bauble, its icon will show up in the
launcher, you can now lock to launcher it.

	If you would like to use the default SQLite [http://sqlite.org/]
database or you don’t know what this means then you can skip this step.
If you would like to use a database backend other than the default SQLite
backend then you will also need to install a database connector.

If you would like to use a PostgreSQL [http://www.postgresql.org]
database then activate the virtual environment and install psycopg2 with
the following commands:

source ~/.virtualenvs/bacl/bin/activate
pip install -U psycopg2

You might need solve dependencies. How to do so, depends on which Linux
flavour you are using. Check with your distribution documentation.

Next...

Connecting to a database.

Installing on MacOSX

Being MacOSX a unix environment, most things will work the same as on Linux
(sort of).

One difficulty is that there are many more versions of MacOSX out
there than one would want to support, and only the current and its
immediately preceding release are kept up-to-date by Apple-the-firm.

Last time we tested, some of the dependencies could not be installed on
MacOSX 10.5 and we assume similar problems would present themselves on older
OSX versions. Bauble has been successfully tested with 10.7 and 10.9.

First of all, you need things which are an integral part of a unix
environment, but which are missing in a off-the-shelf mac:

	developers tools: xcode. check the wikipedia page for the version
supported on your mac.

	package manager: homebrew (tigerbrew for older OSX versions).

with the above installed, run:

brew doctor

make sure you understand the problems it reports, and correct them. pygtk
will need xquartz and brew will not solve the dependency
automatically. either install xquartz using brew or the way you prefer:

brew install Caskroom/cask/xquartz

then install the remaining dependencies:

brew install git
brew install pygtk # takes time and installs all dependencies

follow all instructions on how to activate what you have installed.

the rest is just as on a normal unix machine, and we have a devinstall.sh
script for it. Read the above Linux instructions, follow them, enjoy.

Next...

Connecting to a database.

Installing on Windows

The Windows installer used to be a “batteries-included” installer,
installing everything needed to run Bauble. The current maintainer
of bauble.classic cannot run Windows applications. If you want to
run the latest version of bauble on Windows: download and install
the dependencies and then install Bauble from the source package.

Please report any trouble and help with packaging will be very
welcome.

Note

Bauble has been tested with and is known to work on W-XP, W-7 and
W-8. Although it should work fine on other versions Windows it has not
been thoroughly tested.

the installation steps on Windows:

	download and install git (comes with a unix-like sh and includes
vi).

all default options are fine, except we need git to be executable from
the command prompt:

[image: _images/git3.png]

	download and install Python 2.x (32bit) from:

http://www.python.org

Bauble has been developed and tested using Python 2.x. It will
definitely not run on Python 3.x. If you are interested in helping
port to Python 3.x, please contact the Bauble maintainers.

when installing Python, do put Python in the PATH:

[image: _images/python3.png]

	download pygtk from the following source. (this requires 32bit
python). be sure you download the “all in one” version:

http://ftp.gnome.org/pub/GNOME/binaries/win32/pygtk/

make a complete install, selecting everything:

[image: _images/pygtk1.png]

	(optional) download and install a database connector other than
sqlite3.

On Windows, it is NOT easy to install psycopg2 from sources, using
pip, so “avoid the gory details” and use a pre-compiled pagkage from:

http://initd.org/psycopg/docs/install.html

	REBOOT

hey, this is Windows, you need to reboot for changes to take effect!

	download and run the batch file:

https://raw.githubusercontent.com/Bauble/bauble.classic/master/scripts/devinstall.bat

this will pull the bauble.classic repository on github to your home
directory, under Local\github\Bauble, checkout the bauble-1.0
production line, create a virtual environment and install bauble into it.

you can also run devinstall.bat passing it as argument the numerical
part of the production line you want to follow.

	the following, you will do regularly, to stay up-to-date with the
development line you chose to follow:

cd %HOMEDRIVE%%HOMEPATH%
.virtualenv\bacl\Scripts\activate.bat
cd Local\github\Bauble\bauble.classic
git pull
python setup.py install

	you can now start bauble using the bauble.lnk shortcut that the
installation procedure copies to the Scripts directory of the virtual
environment:

%HOMEDRIVE%%HOMEPATH%\.virtualenv\bacl\Scripts\bauble.lnk

If you would like to generate and print PDF reports using Bauble’s
default report generator then you will need to download and install
Apache FOP [http://xmlgraphics.apache.org/fop/]. After extracting
the FOP archive you will need to include the directory you extracted
to in your PATH.

Next...

Connecting to a database.

Troubleshooting the Install

	What are the packages that are installed by Bauble:

The following packages are required by Bauble

	SQLAlchemy

	lxml

The following packages are optional:

	Mako - required by the template based report generator

	gdata - required by the Picasa photos InfoBox

	Couldn’t install lxml.

The lxml packages have to be compile with a C compiler. If you
don’t have a Make sure the libxml and libxsl packages are
installed. Installing the Cython packages. On Linux you will
have to install the gcc package. On Windows there should be a
precompiled version available at
http://pypi.python.org/pypi/lxml/2.1.1

	Couldn’t install gdata.

For some reason the Google’s gdata package lists itself in the
Python Package Index but doesn’t work properly with the
easy_install command. You can download the latest gdata package
from:

http://code.google.com/p/gdata-python-client/downloads/list

Unzip it and run python setup.py installw in the folder you unzip it to.

Next...

Connecting to a database.

 Copyright 2004-2012, Brett Adams; 2012-2015, Mario Frasca.
 Last updated on Aug 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0.48 documentation

Getting Started

Connecting to a database

When you start Bauble the first thing that comes up is the connection dialog.

[image: _images/bauble-closed-conn-dialog-0.7.0.png]
From this dialog you can select the different connection parameters.

If this is the first time that you are starting Bauble then you will
not having any connections to choose from. Click on the add button to
create a new connection.

If you plan to associate pictures to plants, specify also the pictures
root folder. This is explained in further detail in the Plants section.

By default Bauble uses the file-based SQLite database. If you use the
default filename then Bauble creates a database file with the same name as
the connection in ~/.bauble on Linux/MacOSX or in
AppData\Roaming\Bauble on Windows.

Bauble allows you to connect to any existing database. If you connect to an
empty database a message will popup asking asking you if you would like to
inizialize it as a new database.

If you are connecting to an existing database you can continue to Inserting
or Searching, otherwise read on to the following section.

Creating a new database

To inizialize a database you have to first connect to a database. See
Connecting to a database.

If you are connecting using the default SQLite database backend then Bauble
can handle everything that needs to be done to create a database that Bauble
will then initialize.

If you are connecting to a server based database like PostgreSQL [http://www.postgresql.org] will have to manually create the database,
user and permissions for the database while Bauble will create the tables
and import the default data set. Creating a database on a server based
database is beyond the scope of this manual. If you just got the chills or
sick at your stomach I recommend you just stick with SQLite.

If you have connected to a database that has not yet been initialized
by Bauble then you will get the following dialog:

[image: _images/bauble-create-new-0.7.png]
Be careful because if you have entered the wrong connection parameters
it is possible to overwrite an existing database at this connection.

If you are sure you want to create a database at this connection then
select “Yes”. Bauble will then start creating the database tables and
importing the default data. This can take a minute or two so while all
of the default data is imported into the database so be patient.

Once the default database has been created then you are ready to start
inserting and subsequently searching...

 Copyright 2004-2012, Brett Adams; 2012-2015, Mario Frasca.
 Last updated on Aug 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0.48 documentation

Searching in Bauble

Searching allows you to view, browse and create reports from your
data. You can perform searches by either entering the queries in the
main search entry or by using the Query Builder to create the queries
for you. The results of Bauble searches are listed in the main window.

Search Strategies

Three are three types of search strategies available in Bauble. Considering
the search stragety types available in Bauble, sorted in increasing
complexity: you can search by value, expression or query.

Searching by query, the most complex and powerful, is assisted by the Query
Builder, described below.

All searches are case insensitive so searching for Maxillaria and
maxillaria will return the same results.

Search by Value

Search by value is the simplest way to search. You just type in a
string and see what matches. Which fields/columns are search for your
string depends on how the different plugins are configured. For
example, by default the PlantPlugin search the family name, the genus
name, the species and infraspecific species names, vernacular names
and geography. So if you want to search in the notes field of any of
these types then searching by value is not the search you’re looking
for.

Examples of searching by value would be: Maxillaria, Acanth,
2008.1234, 2003.2.1

Search string are separated by spaces. For example if you enter the
search string Block 10 then Bauble will search for the strings Block
and 10 and return all the results that match either of these
strings. If you want to search for Block 10 as a while string then you
should quote the string like "Block 10".

Search by Expression

Searching with expression gives you a little more control over what
you are searching for. It can narrow the search down to a specific
domain. Expression consist of a domain, an operator and a value. For
example the search: gen=Maxillaria would return all the genera that
match the name Maxillaria. In this case the domain is gen, the
operator is = and the value is Maxillaria.

The search string gen like max% would return all the genera whose
names start with “Max”. In this case the domain again is gen, the
operator is like, which allows for “fuzzy” searching and the value is
max%. The percent sign is used as a wild card so if you search for
max% then it search for all value that start with max. If you search
for %max it searches for all values that end in max. The string %max%a
would search for all value that contain max and end in a.

For more information about the different search domain and their short-hand
aliases, see search-domains .

If expression are invalid they are usually used as search by value
searchs. For example the search string gen= will execute a search by
value for the string gen and the search string gen like will search
for the string gen and the string like.

Search by Query

Queries allow the most control over searching. With queries you can
search across relations, specific columns and join search using
boolean operators like AND and OR.

An example of a query would be:

plant where accession.species.genus.family=Fabaceae and location.site="Block 10"

This query would return all the plants whose family are Fabaceae and
are located in Block 10.

Searching with queries usually requires some knowledge of the Bauble
internals and database table layouts.

A couple of useful examples:

	Which locations are in use:

location where plants.id!=0

	Which genera are associated to at least one accession:

genus where species.accession.id!=0

Domains

The following are the common search domain and the columns they search
by default. The default columns are used when searching by value and
expression. The queries do not use the default columns.

	Domains:	family, fam: Search bauble.plugins.plants.Family

genus, gen: Search bauble.plugins.plants.Genus

species, sp: Search bauble.plugins.plants.Species

geography: Search bauble.plugins.plants.Geography

acc: Search bauble.plugins.garden.Accession

plant: Search bauble.plugins.garden.Plant

location, loc: Search bauble.plugins.garden.Location

The Query Builder

The Query Builder helps you build complex search queries through a
point and click interface. To open the Query Builder click the to the
left of the search entry or select Tools‣Query
Builder from the menu.

The Query Builder composes a query that will be understood by the Query
Search Strategy described above. You can use the Query Builder to get a
feeling of correct queries before you start typing them by hand, something
that you might prefer if you are a fast typer.

After opening the Query Builder you must select a search domain. The
search domain will determine the type of data that is returned and the
properties that you can search.

[image: _images/qb-choose_domain.png]
The search domain is similar to a table in the database and the properties
would be the columns on the table. Often the table/domain and
properties/columns are the same but not always.

Once a search domain is selected you can then select a property of the
domain to compare values to. The search operator can then be changed
for how you want to make the search comparison. Finally you must
enter a value to compare to the search property.

[image: _images/qb-choose_property.png]
If the search property you have selected can only have specific values then
a list of possible values will be provided for you to choose from.

If multiple search properties are necessary then clicking on the plus
sign will add more search properties. Select And/Or next to the
property name choose how the properties will be combined in the search
query.

When you are done building your query click OK to perform the search.

 Copyright 2004-2012, Brett Adams; 2012-2015, Mario Frasca.
 Last updated on Aug 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0.48 documentation

Editing and Inserting Data

The main way that we add or change information in Bauble is by using
the editors. Each basic type of data has its own editor. For example
there is a Family editor, a Genus editor, an Accession editor, etc.

To create a new record click on the Insert menu on
the menubar and then select the type of record your would like to
create. This will open a new blank editor for the type.

To edit an existing record in the database right click on an item in
the search results and select Edit from the popup
menu. This will open an editor that will allow you to change the
values on the record that you selected.

Most types also have children which you can add by right clicking on the
parent and selecting “Add ???...” on the context menu. For example, a
Family has Genus children: you can add a Genus to a Family by right clicking
on a Family and selecting “Add genus”.

Notes

Almost all of the editors in Bauble have a Notes tab which should work
the same regardless of which editor you are using.

If you enter a web address in a note then the link will show up in the
Links box when the item your are editing is selected in the search results.

You can browse the notes for an item in the database using the Notes
box at the bottom of the screen. The Notes box will be desensitized
if the selected item does not have any notes.

Family

The Family editor allows you to add or change a botanical family.

The Family field on the editor will change the name of the family.
The Family field is required.

The Qualifier field will change the family qualifier. The value can
either be sensu lato, sensu stricto or nothing.

Synonyms allow you to add other families that are synonyms with the
family you are currently editing. To add a new synonyms type in a
family name in the entry. You must select a family name from the list
of completions. Once you have selcted a family name that you want to
add as a synonym click on the Add button next to the synonym list and
it will add the selected synonym to the list. To remove a synonym
select the synonym from the list and click on the Remove button.

To cancel your changes without saving then click on the Cancel button.

To save the family you are working on then click OK.

To save the family you are working on and add a genus to it then click on
the Add Genera button.

To add another family when you are finished editing the current one
click on the Next button on the bottom. This will save the current
family and open a new blank family editor.

Genus

The Genus editor allows you to add or change a botanical genus.

The Family field on the genus editor allows you to choose the family
for the genus. When you begin type a family name it will show a list
of families to choose from. The family name must already exist in the
database before you can set it as the family for the genus.

The Genus field allows you to set the genus for this entry.

The Author field allows you to set the name or abbreviation of the
author(s) for the genus.

Synonyms allow you to add other genera that are synonyms with the
genus you are currently editing. To add a new synonyms type in a
genus name in the entry. You must select a genus name from the list
of completions. Once you have selcted a genus name that you want to
add as a synonym click on the Add button next to the synonym list and
it will add the selected synonym to the list. To remove a synonym
select the synonym from the list and click on the Remove button.

To cancel your changes without saving then click on the Cancel button.

To save the genus you are working on then click OK.

To save the genus you are working on and add a species to it then click on
the Add Species button.

To add another genus when you are finished editing the current one
click on the Next button on the bottom. This will save the current
genus and open a new blank genus editor.

Species/Taxon

For historical reasons called a species, but by this we mean a taxon at
rank species or lower. It represents a unique name in the database. The
species editor will allow you to construct the name as well as associate
metadata with the taxon such as its distribution, synonyms and other
information.

The Infraspecific parts in the species editor will allow you to specify
the taxon further than at species rank.

To cancel your changes without saving then click on the Cancel button.

To save the species you are working on then click OK.

To save the species you are working on and add an accession to it then click on
the Add Accession button.

To add another species when you are finished editing the current one
click on the Next button on the bottom. This will save the current
species and open a new blank species editor.

Accessions

The Accession editor allows us to add an accession to a species. In
Bauble an accession represents a group of plants or clones. The
accession would refer maybe a group of seed or cuttings from a
species. A plant would be an individual from that accesssion, i.e. a
specific plant in a specific location.

Accession Source

The source of the accessions lets you add more information about where
this accession came from. At the moment the type of the source can be
either a Collection or a Donation.

Collection

A Collection.

Donation

A Donation.

Plant

The Plant editor.

Creating multiple plants

You can create multiple Plants by using ranges in the code entry.
This is only allowed when creating new plants and it is not possible
when editing existing Plants in the database.

For example the range, 3-5 will create plant with code 3,4,5. The
range 1,4-7,25 will create plants with codes 1,4,5,6,7,25.

When you enter the range in the plant code entry the entry will turn
blue to indicate that you are now creating multiple plants. Any
fields that are set while in this mode will be copied to all the
plants that are created.

Pictures

Just as almost all objects in the Bauble database can have Notes
associated to them, Plants can have Pictures: next to the tab for Notes,
the Plants editor contains an extra tab called “Pictures”. You can associate
as many pictures as you might need to a plant.

When you associate a picture to a plant, the file is copied in the
pictures folder, and a miniature (500x500) is generated and copied in the
thumbnails folder inside of the pictures folder.

As of Bauble-1.0.41, Pictures are not kept in the database. To ensure
pictures are available on all terminals where you have installed and
configured Bauble, you can use a file sharing service like Copy or
Dropbox. The personal choice of the writer of this document is to use Copy,
because it offers much more space and because of its “Fair Storage” policy.

Remember that you have configured the pictures root folder when you
specified the details of your database connection. Again, you should make
sure that the pictures root folder is shared with your file sharing service
of choice.

When a Plant in the current selection is highlighted, its pictures are
displayed in the pictures pane, the pane left of the information pane. When
an accession in the selection is highlighted, any picture associated to the
plants in the highlighted accession are displayed in the pictures pane.

Locations

The Location editor

danger zone

The location editor contains an initially hidden section named danger
zone. The widgets contained in this section allow the user to merge the
current location into a different location, letting the user correct
spelling mistakes or implement policy changes.

 Copyright 2004-2012, Brett Adams; 2012-2015, Mario Frasca.
 Last updated on Aug 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0.48 documentation

Tagging

Tagging is an easy way to give context to an object or create a
collection of object that you want to recall later. For example if you
want to collect a bunch of plants that you later want to create a
report from you can tag them with the string “for that report i was
thinking about”. You can then select “for that report i was thinking
about” from the tags menu to show you all the objects you tagged.

Tagging can be done two ways. By selecting one or more items in the
search results and pressing Ctrl-T or by selecting
Tag‣Tag Selection from the menu. If you have
selected multiple items then only that tags that are common to all the
selected items will have a check next to it.

 Copyright 2004-2012, Brett Adams; 2012-2015, Mario Frasca.
 Last updated on Aug 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0.48 documentation

Generating reports

Using the Mako Report Formatter

The Mako report formatter uses the Mako template language for
generating reports. More information about Mako and its language can
be found at makotemplates.org [http://www.makotemplates.org].

The Mako templating system should already be installed on your
computer if Bauble is installed.

Creating reports with Mako is similar in the way that you would create
a web page from a template. It is much simpler than the XSL
Formatter(see below) and should be relatively easy to create template
for anyone with a little but of programming experience.

The template generator will use the same file extension as the
template which should indicate the type of output the template with
create. For example, to generate an HTML page from your template you
should name the template something like report.html. If the template
will generate a comma seperated value file you should name the
template report.csv.

The template will receive a variable called values which will
contain the list of values in the current search.

The type of each value in values will be the same as the search
domain used in the search query. For more information on search
domains see Domains.

If the query does not have a search domain then the values could all
be of a different type and the Mako template should prepared to handle
them.

Using the XSL Report Formatter

The XSL report formatter requires an XSL to PDF renderer to
convert the data to a PDF file. Apache FOP is is a free and
open-source XSL->PDF renderer and is recommended.

If using Linux, Apache FOP should be installable using your package
manager. On Debian/Ubuntu it is installable as fop in Synaptic or
using the following command:

apt-get install fop

Installing Apache FOP on Windows

You have two options for installing FOP on Windows. The easiest way is
to download the prebuilt ApacheFOP-0.95-1-setup.exe [http://code.google.com/p/apache-fop-installer/downloads/detail?name=ApacheFOP-0.95-1-setup.exe&can=2&q=#makechanges] installer.

Alternatively you can download the archive [http://www.apache.org/dist/xmlgraphics/fop/binaries/]. After
extracting the archive you must add the directory you extracted the
archive to to your PATH environment variable.

 Copyright 2004-2012, Brett Adams; 2012-2015, Mario Frasca.
 Last updated on Aug 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0.48 documentation

Importing and Exporting Data

Although Bauble can be extended through plugins to support alternate
import and export formats, by default it can only import and export
comma seperated values files or CSV.

There is some support for exporting to the Access for Biological
Collections Data it is limited.

There is also limited support for exporting to an XML format that more
or less reflects exactly the tables and row of the database.

Exporting ABCD and XML will not be covered here.

Warning

Importing files will most likely destroy any data you
have in the database so make sure you have backed up your data.

Importing from CSV

In general it is best to only import CSV files into Bauble that were
previously exported from Bauble. It is possible to import any CSV file
but that is more advanced that this doc will cover.

To import CSV files into Bauble select
Tools‣Export‣Comma Seperated Values from the
menu.

After clicking OK on the dialog that ask if you are sure you know what
you’re doing a file chooser will open. In the file chooser select the
files you want to import.

Exporting to CSV

To export the Bauble data to CSV select
Tools‣Export‣Comma Seperated Values from the menu.

This tool will ask you to select a directory to export the CSV data.
All of the tables in Bauble will be exported to files in the format
tablename.txt where tablename is the name of the table where the data
was exported from.

Importing from JSON

This is the way to import data into an existing database, without
destroying previous content. A typical example of this functionality would
be importing your digital collection into a fresh, just initialized Bauble
database. Converting a database into bauble json interchange format is
beyond the scope of this manual, please contact one of the authors if you
need any further help.

Using the Bauble json interchange format, you can import data which you have
exported from a different Bauble installation.

Exporting to JSON

This feature is still under development.

[image: _images/export-to-json.png]
when you activate this export tool, you are given the choice to specify what
to export. You can use the current selection to limit the span of the
export, or you can start at the complete content of a domain, to be chosen
among Species, Accession, Plant.

Exporting Species will only export the complete taxonomic information in
your database. Accession will export all your accessions plus all the
taxonomic information it refers to: unreferred to taxa will not be
exported. Plant will export all living plants (some accession might not be
included), all referred to locations and taxa.

 Copyright 2004-2012, Brett Adams; 2012-2015, Mario Frasca.
 Last updated on Aug 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0.48 documentation

Managing Users

Note

The Bauble users plugin is only available on PostgreSQL
based databases.

The Bauble User’s Plugin will allow you to create and manage the
permissions of users for your Bauble database.

Creating Users

To create a new user...

Permissions

Bauble allows read, write and execute permissions.

 Copyright 2004-2012, Brett Adams; 2012-2015, Mario Frasca.
 Last updated on Aug 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0.48 documentation

Administration

If you are using a real DBMS to hold your botanic data, then you need do
something about database administration. While database adnimistration is
far beyond the scope of this document, we make our users aware of it.

SQLite

SQLite is not what one would consider a real DBMS: each SQLite database is
just in one file. Make safety copies and you will be fine. If you don’t know
where to look for your database files, consider that, per default, bauble
puts its data in the ~/.bauble/ directory (in Windows it is somewhere in
your AppData directory).

MySQL

Please refer to the official documentation.

PostgreSQL

Please refer to the official documentation. A very thorough discussion of
your backup options starts at chapter_24 [http://www.postgresql.org/docs/9.1/static/backup.html].

 Copyright 2004-2012, Brett Adams; 2012-2015, Mario Frasca.
 Last updated on Aug 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0.48 documentation

Downloading the source

The Bauble source can be downloaded from our source
repository on github [http://github.com/Bauble/bauble.classic].

If you want a particular version of Bauble, we release and maintain versions
into branches. you should git checkout the branch corresponding to the
version of your choice. Branch names for Bauble versions are of the form
bauble-x.y, where x.y can be 1.0, for example. Our workflow is to commit
to the master development branch or to a patch branch and to include the
commits into a release branch when ready.

To check out the most recent code from the source repository you will need
to install the Git [http://www.git.org] version control system. Git is
incuded in all reasonable Linux distributions and can be installed on all
current operating systems.

Once you have installed Git you can checkout the latest Bauble code with
the following command:

git clone https://github.com/Bauble/bauble.classic.git

For more information about other available code branches go to
bauble.classic on github [http://www.github.com/Bauble/bauble.classic].

 Copyright 2004-2012, Brett Adams; 2012-2015, Mario Frasca.
 Last updated on Aug 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0.48 documentation

Building the source

Building a python program is a bit of a contraddiction. You don’t normally
build nor compile a python program, you run it in its environment, and
python will process the modules loaded and produce faster-loading compiled
python files. You can, however, produce a Windows executable from a python
script, executable containing the whole python environment and dependencies.

Building (on Windows)

	In order to build a Bauble executable you will first need to download the
source code. For more information about download the Bauble source go to
Downloading the source.

	Follow all steps needed to set up a working Bauble environment from
Installation, but skip the final install step.

	instead of installing Bauble, you produce a Windows executable. This
is achieved with the py2exe target, which is only available on
Windows systems:

python setup.py py2exe

	At this point you can run Bauble. To run the compiled executable run:

.\dist\bauble.exe

or copy the executable to wherever you think appropriate.

	To optionally build an NSIS installer package you must install NSIS
from nsis.sourceforge.net [http://nsis.sourceforge.net/Download]. After installing NSIS
right click on .\scripts\build.nsi in Explorer and select
Compile NSIS Script.

 Copyright 2004-2012, Brett Adams; 2012-2015, Mario Frasca.
 Last updated on Aug 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0.48 documentation

Extending Bauble with Plugins

Nearly everything about Bauble is extensible through plugins. Plugins
can create tables, define custom searchs, add menu items, create
custom commands and more.

To create a new plugin you must extend the bauble.pluginmgr.Plugin
class.

 Copyright 2004-2012, Brett Adams; 2012-2015, Mario Frasca.
 Last updated on Aug 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Bauble 1.0.48 documentation

API Documentation

bauble

The top level module for Bauble.

	
bauble.version = '1.0.48'

	str(object=’‘) -> string

Return a nice string representation of the object.
If the argument is a string, the return value is the same object.

	
bauble.gui = None

	bauble.gui is the instance bauble.ui.GUI

	
bauble.command_handler(cmd, arg)

	Call a command handler.

	Parameters:	
	cmd (str) – The name of the command to call

	arg (list) – The arg to pass to the command handler

	
bauble.main(uri=None)

	Run the main Bauble application.

	Parameters:	uri (str) – the URI of the database to connect to. For more information
about database URIs see http://www.sqlalchemy.org/docs/05/dbengine.html#create-engine-url-arguments

	
bauble.main_is_frozen()

	Return True if we are running in a py2exe environment, else
return False

	
bauble.quit()

	Stop all tasks and quit Bauble.

	
bauble.save_state()

	Save the gui state and preferences.

bauble.db

	
bauble.db.Session = None

	bauble.db.Session is created after the database has been opened with
bauble.db.open(). bauble.db.Session should be used when you need
to do ORM based activities on a bauble database. To create a new
Session use::Uncategorized

session = bauble.db.Session()

When you are finished with the session be sure to close the session
with session.close(). Failure to close sessions can lead to
database deadlocks, particularly when using PostgreSQL based
databases.

	
bauble.db.engine = None

	A sqlalchemy.engine.base.Engine used as the default
connection to the database.

	
bauble.db.Base = <class 'sqlalchemy.ext.declarative.api.Base'>

	

	
bauble.db.Base

	All tables/mappers in Bauble which use the SQLAlchemy declarative
plugin for declaring tables and mappers should derive from this
class.

An instance of sqlalchemy.ext.declarative.Base

	
db.metadata = MetaData(bind=None)

	

	
bauble.db.metadata

	The default metadata for all Bauble tables.

An instance of sqlalchemy.schema.MetaData

	
class bauble.db.MapperBase(classname, bases, dict_)

	MapperBase adds the id, _created and _last_updated columns to all
tables.

In general there is no reason to use this class directly other
than to extend it to add more default columns to all the bauble
tables.

	
class bauble.db.HistoryExtension

	Bases: sqlalchemy.orm.deprecated_interfaces.MapperExtension

HistoryExtension is a
MapperExtension that is added
to all clases that inherit from bauble.db.Base so that all
inserts, updates, and deletes made to the mapped objects are
recorded in the history table.

	
class bauble.db.History(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

The history table records ever changed made to every table that
inherits from Base

	Table name:	history

	Columns:	
	id: sqlalchemy.types.Integer

	A unique identifier.

	table_name: sqlalchemy.types.String

	The name of the table the change was made on.

	table_id: sqlalchemy.types.Integer

	The id in the table of the row that was changed.

	values: sqlalchemy.types.String

	The changed values.

	operation: sqlalchemy.types.String

	The type of change. This is usually one of insert, update or delete.

	user: sqlalchemy.types.String

	The name of the user who made the change.

	timestamp: sqlalchemy.types.DateTime

	When the change was made.

	
bauble.db.open(uri, verify=True, show_error_dialogs=False)

	Open a database connection. This function sets bauble.db.engine to
the opened engined.

Return bauble.db.engine if successful else returns None and
bauble.db.engine remains unchanged.

	Parameters:	
	uri (str) – The URI of the database to open.

	verify (bool) – Where the database we connect to should be verified
as one created by Bauble. This flag is used mostly for
testing.

	show_error_dialogs (bool) – A flag to indicate whether the error
dialogs should be displayed. This is used mostly for testing.

	
bauble.db.create(import_defaults=True)

	Create new Bauble database at the current connection

	Parameters:	import_defaults (bool) – A flag that is passed to each plugins
install() method to indicate where it should import its
default data. This is mainly used for testing. The default
value is True

	
bauble.db.verify_connection(engine, show_error_dialogs=False)

	Test whether a connection to an engine is a valid Bauble database. This
method will raise an error for the first problem it finds with the
database.

	Parameters:	
	engine (sqlalchemy.engine.Engine) – the engine to test

	show_error_dialogs (bool) – flag for whether or not to show message
dialogs detailing the error, default=False

bauble.connmgr

The connection manager provides a GUI for creating and opening
connections. This is the first thing displayed when Bauble starts.

	
class bauble.connmgr.ConnectionManager(default=None)

	The main class that starts the connection manager GUI.

	Parameters:	default – the name of the connection to select from the list
of connection names

	
check_parameters_valid()

	check that all of the information in the current connection
is valid and return true or false

NOTE: this was meant to be used to implement an eclipse style
information box at the top of the dialog but it’s not really
used right now

	
compare_prefs_to_saved(name)

	name is the name of the connection in the prefs

	
get_passwd(title='Enter your password', before_main=False)

	Show a dialog with and entry and return the value entered.

	
on_changed_name_combo(combo, data=None)

	the name changed so fill in everything else

	
on_changed_type_combo(combo, data=None)

	the type changed so change the params_box

	
on_dialog_response(dialog, response, data=None)

	The dialog’s response signal handler.

	
on_remove_button_clicked(button, data=None)

	remove the connection from connection list, this does not affect
the database or its data

	
parameters_to_uri(params)

	return connections paramaters as a uri

	
remove_connection(name)

	if we restrict the user to only removing the current connection
then it saves us the trouble of having to iter through the model

	
save_current_to_prefs()

	save connection parameters from the widgets in the prefs

	
set_active_connection_by_name(name)

	sets the name of the connection in the name combo, this
causes on_changed_name_combo to be fired which changes the param
box type and set the connection parameters

	
start()

	Show the connection manager.

	
working_dbtypes

	get for self.working_dbtypes property

this sets self._working_dbtypes to a dictionary where the
keys are the database names and the values are the index in
the connectiona manager’s database types

bauble.editor

	
bauble.editor.default_completion_cell_data_func(column, renderer, model, treeiter, data=None)

	the default completion cell data function for
GenericEditorView.attach_completions

	
bauble.editor.default_completion_match_func(completion, key_string, treeiter)

	the default completion match function for
GenericEditorView.attach_completions, does a case-insensitive string
comparison of the the completions model[iter][0]

	
class bauble.editor.ValidatorError(msg)

	

	
class bauble.editor.Validator

	The interface that other validators should implement.

	
class bauble.editor.StringOrNoneValidator

	If the value is an empty string then return None, else return the
str() of the value.

	
class bauble.editor.UnicodeOrNoneValidator(encoding='utf-8')

	If the value is an empty unicode string then return None, else
return the unicode() of the value. The default encoding is
‘utf-8’.

	
class bauble.editor.IntOrNoneStringValidator

	If the value is an int, long or can be cast to int then return the
number, else return None

	
class bauble.editor.FloatOrNoneStringValidator

	If the value is an int, long, float or can be cast to float then
return the number, else return None

	
class bauble.editor.GenericEditorView(filename, parent=None)

	An generic object meant to be extended to provide the view for a
GenericModelViewPresenterEditor.

	Parameters:	
	filename – a gtk.Builder UI definition

	parent – a gtk.Window or subclass to use as the parent
window, if parent=None then bauble.gui.window is used

	
attach_completion(entry, cell_data_func=<function default_completion_cell_data_func>, match_func=<function default_completion_match_func>, minimum_key_length=2, text_column=-1)

	Attach an entry completion to a gtk.Entry. The defaults
values for this attach_completion assumes the completion popup
only shows text and that the text is in the first column of
the model.

Return the completion attached to the entry.

NOTE: If you are selecting completions from strings in your model
you must set the text_column parameter to the column in the
model that holds the strings or else when you select the string
from the completions it won’t get set properly in the entry
even though you call entry.set_text().

	Parameters:	
	entry – the name of the entry to attach the completion

	cell_data_func – the function to use to display the rows in
the completion popup

	match_func – a function that returns True/False if the
value from the model should be shown in the completions

	minimum_key_length – default=2

	text_column – the value of the text-column property on the entry,
default is -1

	
cleanup()

	Should be caled when after self.start() returns to cleanup
undo any changes on the view.

By default all it does is call self.disconnect_all()

	
connect(obj, signal, callback, *args)

	Attach a signal handler for signal on obj. For more
information see gobject.connect_after()

	Parameters:	
	obj – An instance of a subclass of gobject that will
receive the signal

	signal – the name of the signal the object will receive

	callback – the function or method to call the object
receives the signal

	args – extra args to pass the the callback

	
connect_after(obj, signal, callback, *args)

	Attach a signal handler for signal on obj. For more
information see gobject.connect_after()

	Parameters:	
	obj – An instance of a subclass of gobject that will
receive the signal

	signal – the name of the signal the object will receive

	callback – the function or method to call the object
receives the signal

	args – extra args to pass the the callback

	
disconnect_all()

	Disconnects all the signal handlers attached with
GenericEditorView.connect() or
GenericEditorView.connect_after()

	
get_window()

	Return the top level window for view

	
init_translatable_combo(combo, translations, default=None, cmp=None)

	Initialize a gtk.ComboBox with translations values where
model[row][0] is the value that will be stored in the database
and model[row][1] is the value that will be visible in the
gtk.ComboBox.

A gtk.ComboBox initialized with this method should work with
self.assign_simple_handler()

	Parameters:	
	combo –

	translations – a list of pairs, or a dictionary,
of values->translation.

	
on_dialog_close(dialog, event=None)

	Called if self.get_window() is a gtk.Dialog and it receives
the close signal.

	
on_dialog_response(dialog, response, *args)

	Called if self.get_window() is a gtk.Dialog and it receives
the response signal.

	
on_window_delete(window, event=None)

	Called when the window return by get_window() receives the
delete event.

	
restore_state()

	Restore the state of the view, this is usually done by getting a value
by the preferences and setting the equivalent in the interface

	
save_state()

	Save the state of the view by setting a value in the preferences
that will be called restored in restore_state
e.g. prefs[pref_string] = pref_value

	
set_widget_value(widget, value, markup=False, default=None, index=0)

	

	Parameters:	
	widget – a widget or name of a widget in self.widgets

	value – the value to put in the widgets

	markup – whether the data in value uses pango markup

	default – the default value to put in the widget if value is None

	index – the row index to use for those widgets who use a model

This method called bauble.utils.set_widget_value()

	
class bauble.editor.GenericEditorPresenter(model, view)

	The presenter of the Model View Presenter Pattern

	Parameters:	
	model – an object instance mapped to an SQLAlchemy table

	view – should be an instance of GenericEditorView

The presenter should usually be initialized in the following order:
1. initialize the widgets
2. refresh the view, put values from the model into the widgets
3. connect the signal handlers

	
add_problem(problem_id, problem_widgets=None)

	Add problem_id to self.problems and change the background of widget(s)
in problem_widgets.

	Parameters:	
	problem_id – A unique id for the problem.

	problem_widgets – either a widget or list of widgets
whose background color should change to indicate a problem
(default=None)

	
assign_completions_handler(widget, get_completions, on_select=<function <lambda>>)

	Dynamically handle completions on a gtk.Entry.

	Parameters:	
	widget – a gtk.Entry instance or widget name

	get_completions – the method to call when a list of
completions is requested, returns a list of completions

	on_select – callback for when a value is selected from
the list of completions

	
assign_simple_handler(widget_name, model_attr, validator=None)

	Assign handlers to widgets to change fields in the model.

	Parameters:	
	widget_name –

	model_attr –

	validator –

Note: Where widget is a gtk.ComboBox or gtk.ComboBoxEntry then
the value is assumed to be stored in model[row][0]

	
cleanup()

	Revert any changes the presenter might have done to the
widgets so that next time the same widgets are open everything
will be normal.

By default it only calls self.view.cleanup()

	
clear_problems()

	Clear all the problems from all widgets associated with the presenter

	
has_problems(widget=None)

	Return True/False depending on if widget has any problems
attached to it. if no widget is specified, result is True if
there is any problem at all.

	
init_enum_combo(widget_name, field)

	Initialize a gtk.ComboBox widget with name widget_name from
enum values in self.model.field

	Parameters:	
	widget_name –

	field –

	
is_dirty()

	is the presenter dirty?

the presenter is dirty depending on whether it has changed anything
that needs to be committed. This doesn’t necessarily imply that the
session is not dirty nor is it required to change back to True if
the changes are committed.

	
on_check_toggled(widget, value=None)

	handle toggled signal on check buttons

	
on_datetime_entry_changed(widget, value=None)

	handle ‘changed’ signal on datetime entry widgets.

	
on_text_entry_changed(widget, value=None)

	handle ‘changed’ signal on generic text entry widgets.

	
refresh_view()

	Refresh the view with the model values. This method should be
called before any signal handlers are configured on the view
so that the model isn’t changed when the widget values are set.

Any classes that extend GenericEditorPresenter are required to
implement this method.

	
remove_problem(problem_id, problem_widgets=None)

	Remove problem_id from self.problems and reset the background
color of the widget(s) in problem_widgets. If problem_id is
None and problem_widgets is None then method won’t do anything.

	Parameters:	
	problem_id – the problem to remove, if None then remove
any problem from the problem_widget(s)

	problem_widgets – a gtk.Widget instance to remove the problem
from, if None then remove all occurrences of problem_id regardless
of the widget

	
set_model_attr(attr, value, validator=None)

	It is best to use this method to set values on the model
rather than setting them directly. Derived classes can
override this method to take action when the model changes.

	Parameters:	
	attr – the attribute on self.model to set

	value – the value the attribute will be set to

	validator – validates the value before setting it

	
start()

	Start the presenter. This must be implemented by all classes
that subclass GenericEditorPresenter

	
class bauble.editor.GenericModelViewPresenterEditor(model, parent=None)

	GenericModelViewPresenterEditor assume that model is an instance
of object mapped to a SQLAlchemy table

The editor creates its own session and merges the model into
it. If the model is already in another session that original
session will not be effected.

When creating a subclass of this editor then you should explicitly
close the session when you are finished with it.

	Parameters:	
	model – an instance of an object mapped to a SQLAlchemy
Table, the model will be copied and merged into self.session so
that the original model will not be changed

	parent – the parent windows for the view or None

	
attach_response(dialog, response, keyname, mask)

	Attach a response to dialog when keyname and mask are pressed

	
commit_changes()

	Commit the changes to self.session()

	
class bauble.editor.NotesPresenter(presenter, notes_property, parent_container)

	The NotesPresenter provides a generic presenter for editor notes
on an item in the database. This presenter requires that the
notes property provide a specific interface.

	Parameters:	
	presenter – the parent presenter of this presenter

	notes_property – the string name of the notes property of
the presenter.model

	parent_container – the gtk.Container to add the notes editor box to

	
add_note(note=None)

	Add a new note to the model.

bauble.i18n

The i18n module defines the _() function for creating translatable strings.

_() is added to the Python builtins so there is no reason to import
this module more than once in an application. It is usually imported
in bauble

bauble.ui

	
class bauble.ui.GUI

	Bases: object

	
add_menu(name, menu, index=-1)

	add a menu to the menubar

	Parameters:	
	name –

	menu –

	index –

	
add_to_history(text, index=0)

	add text to history, if text is already in the history then set its
index to index parameter

	
add_to_insert_menu(editor, label)

	add an editor to the insert menu

	Parameters:	
	editor – the editor to add to the menu

	label – the label for the menu item

	
build_tools_menu()

	Build the tools menu from the tools provided by the plugins.

This method is generally called after plugin initialization

	
clear_menu(path)

	remove all the menus items from a menu

	
create_main_menu()

	get the main menu from the UIManager XML description, add its actions
and return the menubar

	
get_view()

	return the current view in the view box

	
on_file_menu_open(widget, data=None)

	Open the connection manager.

	
on_go_button_clicked(widget)

	

	
on_tools_menu_item_activate(widget, tool)

	Start a tool on the Tool menu.

	
save_state()

	this is usually called from bauble.py when it shuts down

	
set_view(view=None)

	set the view, if view is None then remove any views currently set

	Parameters:	view – default=None

	
show_message_box(msg)

	Show an info message in the message drop down box

	
statusbar_clear()

	Call gtk.Statusbar.pop() for each context_id that had previously
been pushed() onto the the statusbar stack. This might not clear
all the messages in the statusbar but it’s the best we can do
without knowing how many messages are in the stack.

bauble.meta

	
bauble.meta.get_default(name, default=None, session=None)

	Get a BaubleMeta object with name. If the default value is not
None then a BaubleMeta object is returned with name and the
default value given.

If a session instance is passed (session != None) then we
don’t commit the session.

	
class bauble.meta.BaubleMeta(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

The BaubleMeta class is used to set and retrieve meta information
based on key/name values from the bauble meta table.

	Table name:	bauble

	Columns:	
	name:

	The name of the data.

	value:

	The value.

bauble.paths

Access to standard paths used by Bauble.

	
bauble.paths.main_dir()

	Returns the path of the bauble executable.

	
bauble.paths.lib_dir()

	Returns the path of the bauble module.

	
bauble.paths.locale_dir()

	Returns the root path of the locale files

	
bauble.paths.user_dir()

	Returns the path to where Bauble settings should be saved.

bauble.pluginmgr

Manage plugin registry, loading, initialization and installation. The
plugin manager should be started in the following order:

1. load the plugins: search the plugin directory for plugins,
populates the plugins dict (happens in load())

2. install the plugins if not in the registry, add properly
installed plugins in to the registry (happens in load())

	initialize the plugins (happens in init())

	
bauble.pluginmgr.register_command(handler)

	Register command handlers. If a command is a duplicate then it
will overwrite the old command of the same name.

	Parameters:	handler – A class which extends pluginmgr.CommandHandler

	
bauble.pluginmgr.load(path=None)

	Search the plugin path for modules that provide a plugin. If path
is a directory then search the directory for plugins. If path is
None then use the default plugins path, bauble.plugins.

This method populates the pluginmgr.plugins dict and imports the
plugins but doesn’t do any plugin initialization.

	Parameters:	path (str) – the path where to look for the plugins

	
bauble.pluginmgr.init(force=False)

	Initialize the plugin manager.

1. Check for and install any plugins in the plugins dict that
aren’t in the registry.
2. Call each init() for each plugin the registry in order of dependency
3. Register the command handlers in the plugin’s commands[]

NOTE: This should be called after after Bauble has established a
connection to a database with db.open()

	
bauble.pluginmgr.install(plugins_to_install, import_defaults=True, force=False)

	

	Parameters:	
	plugins_to_install – A list of plugins to install. If the
string “all” is passed then install all plugins listed in the
bauble.pluginmgr.plugins dict that aren’t already listed in
the plugin registry.

	import_defaults (bool) – Flag passed to the plugin’s install()
method to indicate whether it should import its default data.

	force (book) – Force, don’t ask questions.

	
class bauble.pluginmgr.Plugin

	
	tools:

	a list of BaubleTool classes that this plugin provides, the
tools’ category and label will be used in Bauble’s “Tool” menu

	depends:

	a list of names classes that inherit from BaublePlugin that this
plugin depends on

	cmds:

	a map of commands this plugin handled with callbacks,
e.g dict(‘cmd’, lambda x: handler)

	description:

	a short description of the plugin

	
classmethod init()

	init() is run when Bauble is first started

	
classmethod install(import_defaults=True)

	install() is run when a new plugin is installed, it is usually
only run once for the lifetime of the plugin

	
class bauble.pluginmgr.Tool

	

	
class bauble.pluginmgr.View(*args, **kwargs)

	

	
class bauble.pluginmgr.CommandHandler

	

bauble.prefs

	
bauble.prefs.default_prefs_file = '/home/docs/.bauble/config'

	The default file for the preference settings file.

	
bauble.prefs.config_version_pref = 'bauble.config.version'

	The preferences key for the bauble version of the preferences file.

	
bauble.prefs.date_format_pref = 'bauble.default_date_format'

	The preferences key for the default data format.

	
bauble.prefs.parse_dayfirst_pref = 'bauble.parse_dayfirst'

	The preferences key for to determine whether the date should come
first when parsing date string. For more information see the
dateutil.parser.parse() method.

Values: True, False

	
bauble.prefs.parse_yearfirst_pref = 'bauble.parse_yearfirst'

	The preferences key for to determine whether the date should come
first when parsing date string. For more information see the
dateutil.parser.parse() method.

Values: True, False

	
bauble.prefs.units_pref = 'bauble.units'

	The preferences key for the default units for Bauble.

Values: metric, imperial

bauble.task

The bauble.task module allows you to queue up long running tasks. The
running tasks still block but allows the GUI to update.

	
bauble.task.queue(task)

	Run a task.

task should be a generator with side effects. it does not matter what it
yields, it is important that it does stop from time to time yielding
whatever it wants to, and causing the side effect it has to cause.

	
bauble.task.set_message(msg)

	A convenience function for setting a message on the
statusbar. Returns the message id

	
bauble.task.clear_messages()

	Clear all the messages from the statusbar that were set with
bauble.task.set_message()

bauble.types

	
class bauble.btypes.Enum(values, empty_to_none=False, strict=True, translations={}, **kwargs)

	Bases: sqlalchemy.sql.type_api.TypeDecorator

A database independent Enum type. The value is stored in the
database as a Unicode string.

	
class bauble.btypes.Date(*args, **kwargs)

	Bases: sqlalchemy.sql.type_api.TypeDecorator

A Date type that allows Date strings

	
class bauble.btypes.DateTime(*args, **kwargs)

	Bases: sqlalchemy.sql.type_api.TypeDecorator

A DateTime type that allows strings

bauble.utils

A common set of utility functions used throughout Bauble.

	
bauble.utils.find_dependent_tables(table, metadata=None)

	Return an iterator with all tables that depend on table. The
tables are returned in the order that they depend on each
other. For example you know that table[0] does not depend on
tables[1].

	Parameters:	
	table – The tables who dependencies we want to find

	metadata – The sqlalchemy.engine.MetaData object
that holds the tables to search through. If None then use
bauble.db.metadata

	
bauble.utils.tree_model_has(tree, value)

	Return True or False if value is in the tree.

	
bauble.utils.search_tree_model(parent, data, cmp=<function <lambda>>)

	Return a iterable of gtk.TreeIter instances to all occurences
of data in model

	Parameters:	
	parent – a gtk.TreeModel or a gtk.TreeModelRow instance

	data – the data to look for

	cmp – the function to call on each row to check if it matches
data, default is C{lambda row, data: row[0] == data}

	
bauble.utils.clear_model(obj_with_model)

	

	Parameters:	obj_with_model – a gtk Widget that has a gtk.TreeModel that
can be retrieved with obj_with_mode.get_model

Remove the model from the object, deletes all the items in the
model, clear the model and then delete the model and set the model
on the object to None

	
bauble.utils.combo_set_active_text(combo, value)

	does the same thing as set_combo_from_value but this looks more like a
GTK+ method

	
bauble.utils.set_combo_from_value(combo, value, cmp=<function <lambda>>)

	Find value in combo model and set it as active, else raise ValueError
cmp(row, value) is the a function to use for comparison

Note

if more than one value is found in the combo then the
first one in the list is set

	
bauble.utils.combo_get_value_iter(combo, value, cmp=<function <lambda>>)

	Returns a gtk.TreeIter that points to first matching value in the
combo’s model.

	Parameters:	
	combo – the combo where we should search

	value – the value to search for

	cmp – the method to use to compare rows in the combo model and value,
the default is C{lambda row, value: row[0] == value}

Note

if more than one value is found in the combo then the first one
in the list is returned

	
bauble.utils.set_widget_value(widget, value, markup=False, default=None, index=0)

	

	Parameters:	
	widget – an instance of gtk.Widget

	value – the value to put in the widget

	markup – whether or not value is markup

	default – the default value to put in the widget if the value is None

	index – the row index to use for those widgets who use a model

Note

any values passed in for widgets that expect a string will call
the values __str__ method

	
bauble.utils.create_message_dialog(msg, type=<enum GTK_MESSAGE_INFO of type GtkMessageType>, buttons=<enum GTK_BUTTONS_OK of type GtkButtonsType>, parent=None)

	Create a message dialog.

	Parameters:	
	msg – The markup to use for the message. The value should be
escaped in case it contains any HTML entities.

	type – A GTK message type constant. The default is gtk.MESSAGE_INFO.

	buttons – A GTK buttons type constant. The default is
gtk.BUTTONS_OK.

	parent – The parent window for the dialog

Returns a gtk.MessageDialog

	
bauble.utils.message_dialog(msg, type=<enum GTK_MESSAGE_INFO of type GtkMessageType>, buttons=<enum GTK_BUTTONS_OK of type GtkButtonsType>, parent=None)

	Create a message dialog with bauble.utils.create_message_dialog()
and run and destroy it.

Returns the dialog’s response.

	
bauble.utils.create_yes_no_dialog(msg, parent=None)

	Create a dialog with yes/no buttons.

	
bauble.utils.yes_no_dialog(msg, parent=None, yes_delay=-1)

	Create and run a yes/no dialog.

Return True if the dialog response equals gtk.RESPONSE_YES

	Parameters:	
	msg – the message to display in the dialog

	parent – the dialog’s parent

	yes_delay – the number of seconds before the yes button should
become sensitive

	
bauble.utils.create_message_details_dialog(msg, details, type=<enum GTK_MESSAGE_INFO of type GtkMessageType>, buttons=<enum GTK_BUTTONS_OK of type GtkButtonsType>, parent=None)

	Create a message dialog with a details expander.

	
bauble.utils.message_details_dialog(msg, details, type=<enum GTK_MESSAGE_INFO of type GtkMessageType>, buttons=<enum GTK_BUTTONS_OK of type GtkButtonsType>, parent=None)

	Create and run a message dialog with a details expander.

	
bauble.utils.setup_text_combobox(combo, values=None, cell_data_func=None)

	Configure a gtk.ComboBox as a text combobox

NOTE: If you pass a cell_data_func that is a method of an object that
holds a reference to combo then the object will not be properly
garbage collected. To avoid this problem either don’t pass a
method of object or make the method static

	Parameters:	
	combo – gtk.ComboBox

	values – list vales or gtk.ListStore

	cell_date_func –

	
bauble.utils.setup_date_button(view, entry, button, date_func=None)

	Associate a button with entry so that when the button is clicked a
date is inserted into the entry.

	Parameters:	
	view – a bauble.editor.GenericEditorView

	entry – the entry that the data goes into

	button – the button that enters the data in entry

	date_func – the function that returns a string represention
of the date

	
bauble.utils.to_unicode(obj, encoding='utf-8')

	Return obj converted to unicode. If obj is already a unicode
object it will not try to decode it to converted it to <encoding>
but will just return the original obj

	
bauble.utils.utf8(obj)

	This function is an alias for to_unicode(obj, ‘utf-8’)

	
bauble.utils.xml_safe(obj, encoding='utf-8')

	Return a string with character entities escaped safe for xml, if the
str parameter is a string a string is returned, if str is a unicode object
then a unicode object is returned

	
bauble.utils.xml_safe_utf8(obj)

	This method is deprecated and just returns xml_safe(obj)

	
bauble.utils.natsort_key(obj)

	a key getter for sort and sorted function

the sorting is done on return value of obj.__str__() so we can sort
objects as well, i don’t know if this will cause problems with unicode

use like: sorted(some_list, key=utils.natsort_key)

	
bauble.utils.delete_or_expunge(obj)

	If the object is in object_session(obj).new then expunge it from the
session. If not then session.delete it.

	
bauble.utils.reset_sequence(column)

	If column.sequence is not None or the column is an Integer and
column.autoincrement is true then reset the sequence for the next
available value for the column...if the column doesn’t have a
sequence then do nothing and return

The SQL statements are executed directly from db.engine

This function only works for PostgreSQL database. It does nothing
for other database engines.

	
bauble.utils.make_label_clickable(label, on_clicked, *args)

	

	Parameters:	
	label – a gtk.Label that has a gtk.EventBox as its parent

	on_clicked – callback to be called when the label is clicked
on_clicked(label, event, data)

	
bauble.utils.enum_values_str(col)

	

	Parameters:	col – a string if table.col where col is an enum type

return a string with of the values on an enum type join by a comma

	
bauble.utils.which(filename, path=None)

	Return first occurence of file on the path.

	
bauble.utils.ilike(col, val, engine=None)

	Return a cross platform ilike function.

	
bauble.utils.range_builder(text)

	Return a list of numbers from a string range of the form 1-3,4,5

	
bauble.utils.topological_sort(items, partial_order)

	Perform topological sort.

	Parameters:	
	items – a list of items to be sorted.

	partial_order – a list of pairs. If pair (a,b) is in it, it
means that item a should appear before item b. Returns a list of
the items in one of the possible orders, or None if partial_order
contains a loop.

	
bauble.utils.get_distinct_values(column, session)

	Return a list of all the distinct values in a table column

	
bauble.utils.get_invalid_columns(obj, ignore_columns=['id'])

	Return column names on a mapped object that have values
which aren’t valid for the model.

Invalid columns meet the following criteria:
- nullable columns with null values
- ...what else?

	
bauble.utils.get_urls(text)

	Return tuples of http/https links and labels for the links. To
label a link prefix it with [label text],
e.g. [BBG]http://belizebotanic.org

	
class bauble.utils.GenericMessageBox

	Bases: gtk.EventBox

Abstract class for showing a message box at the top of an editor.

	
class bauble.utils.MessageBox(msg=None, details=None)

	Bases: bauble.utils.GenericMessageBox

A MessageBox that can display a message label at the top of an editor.

	
class bauble.utils.YesNoMessageBox(msg=None, on_response=None)

	Bases: bauble.utils.GenericMessageBox

A message box that can present a Yes or No question to the user

	
bauble.utils.add_message_box(parent, type=1)

	

	Parameters:	
	parent – the parent gtk.Box width to add the
message box to

	type – one of MESSAGE_BOX_INFO, MESSAGE_BOX_ERROR or
MESSAGE_BOX_YESNO

bauble.view

	
class bauble.view.Action(name, label, tooltip=None, stock_id=None, callback=None, accelerator=None, multiselect=False, singleselect=True)

	Bases: gtk.Action

An Action allows a label, tooltip, callback and accelerator to be called
when specific items are selected in the SearchView

	
class bauble.view.InfoBox(tabbed=False)

	Bases: gtk.Notebook

Holds list of expanders with an optional tabbed layout.

The default is to not use tabs. To create the InfoBox with tabs
use InfoBox(tabbed=True). When using tabs then you can either add
expanders directly to the InfoBoxPage or using
InfoBox.add_expander with the page_num argument.

Also, it’s not recommended to create a subclass of a subclass of
InfoBox since if they both use bauble.utils.BuilderWidgets then
the widgets will be parented to the infobox that is created first
and the expanders of the second infobox will appear empty.

	
add_expander(expander, page_num=0)

	Add an expander to a page.

	Parameters:	
	expander – The expander to add.

	page_num – The page number in the InfoBox to add the expander.

	
on_switch_page(notebook, dummy_page, page_num, *args)

	Called when a page is switched

	
update(row)

	Update the current page with row.

	
class bauble.view.InfoBoxPage

	Bases: gtk.ScrolledWindow

A gtk.ScrolledWindow that contains
bauble.view.InfoExpander objects.

	
add_expander(expander)

	Add an expander to the list of exanders in this infobox

	Parameters:	expander – the bauble.view.InfoExpander to add to this infobox

	
get_expander(label)

	Returns an expander by the expander’s label name

	Parameters:	label – the name of the expander to return

	
remove_expander(label)

	Remove expander from the infobox by the expander’s label bel

	Parameters:	label – the name of th expander to remove

Return the expander that was removed from the infobox.

	
update(row)

	Updates the infobox with values from row

	Parameters:	row – the mapper instance to use to update this infobox,
this is passed to each of the infoexpanders in turn

	
class bauble.view.InfoExpander(label, widgets=None)

	Bases: gtk.Expander

an abstract class that is really just a generic expander with a vbox
to extend this you just have to implement the update() method

	
set_widget_value(widget_name, value, markup=False, default=None)

	a shorthand for L{bauble.utils.set_widget_value()}

	
update(value)

	This method should be implemented by classes that extend InfoExpander

	
class bauble.view.PropertiesExpander

	Bases: bauble.view.InfoExpander

	
update(row)

	”
Update the widget in the expander.

	
class bauble.view.LinksExpander(notes=None)

	Bases: bauble.view.InfoExpander

	
class bauble.view.SearchView

	Bases: bauble.pluginmgr.View

The SearchView is the main view for Bauble. It manages the search
results returned when search strings are entered into the main
text entry.

	
class bauble.view.SearchView.ViewMeta

	

bauble.search

	
class bauble.search.SearchParser

	The parser for bauble.search.MapperSearch

	
parse_string(text)

	request pyparsing object to parse text

text can be either a query, or a domain expression, or a list of
values. the self.statement pyparsing object parses the input text
and return a pyparsing.ParseResults object that represents the input

	
class bauble.search.SearchStrategy

	Interface for adding search strategies to a view.

	
search(text, session=None)

	

	Parameters:	
	text – the search string

	session – the session to use for the search

Return an iterator that iterates over mapped classes retrieved
from the search.

	
class bauble.search.MapperSearch

	Bases: bauble.search.SearchStrategy

Mapper Search support three types of search expression:
1. value searches: search that are just list of values, e.g. value1,
value2, value3, searches all domains and registered columns for values
2. expression searches: searched of the form domain=value, resolves the
domain and searches specific columns from the mapping
3. query searchs: searches of the form domain where ident.ident = value,
resolve the domain and identifiers and search for value

	
search(text, session=None)

	Returns a set() of database hits for the text search string.

If session=None then the session should be closed after the results
have been processed or it is possible that some database backends
could cause deadlocks.

	
class bauble.search.QueryBuilder(parent=None)

	Bases: gtk.Dialog

bauble.plugins.plants

	
class bauble.plugins.plants.Family(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base, bauble.db.Serializable

	Table name:	family

	Columns:	
	family:

	The name of the family. Required.

	qualifier:

	The family qualifier.

	Possible values:

	
	
	lat.: aggregrate family (senso lato)

	
	str.: segregate family (senso stricto)

	‘’: the empty string

	Properties:	
	synonyms:

	An association to _synonyms that will automatically
convert a Family object and create the synonym.

	Constraints:	The family table has a unique constraint on family/qualifier.

	
class bauble.plugins.plants.family.FamilySynonym(synonym=None, **kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

	Table name:	family_synonyms

	Columns:	family_id:

synonyms_id:

	Properties:	synonyms:

family:

	
class bauble.plugins.plants.Genus(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base, bauble.db.Serializable

	Table name:	genus

	Columns:	
	genus:

	The name of the genus. In addition to standard generic
names any additional hybrid flags or genera should included here.

	qualifier:

	Designates the botanical status of the genus.

	Possible values:

	
	
	lat.: aggregrate genus (sensu lato)

	
	str.: segregate genus (sensu stricto)

	author:

	The name or abbreviation of the author who published this genus.

	Properties:	
	family:

	The family of the genus.

	synonyms:

	The list of genera who are synonymous with this genus. If
a genus is listed as a synonym of this genus then this
genus should be considered the current and valid name for
the synonym.

	Contraints:	The combination of genus, author, qualifier
and family_id must be unique.

	
class bauble.plugins.plants.genus.GenusSynonym(synonym=None, **kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

	Table name:	genus_synonym

	
class bauble.plugins.plants.Species(*args, **kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base, bauble.db.Serializable, bauble.db.DefiningPictures

	Table name:	species

	Columns:	sp:
sp2:
sp_author:

	hybrid:

	Hybrid flag

infrasp1:
infrasp1_rank:
infrasp1_author:

infrasp2:
infrasp2_rank:
infrasp2_author:

infrasp3:
infrasp3_rank:
infrasp3_author:

infrasp4:
infrasp4_rank:
infrasp4_author:

cv_group:
trade_name:

	sp_qual:

	Species qualifier

	Possible values:

	agg.: An aggregate species

s. lat.: aggregrate species (sensu lato)

s. str.: segregate species (sensu stricto)

	label_distribution:

	UnicodeText
This field is optional and can be used for the label in case
str(self.distribution) is too long to fit on the label.

	Properties:	accessions:

vernacular_names:

default_vernacular_name:

synonyms:

distribution:

	Constraints:	The combination of sp, sp_author, hybrid, sp_qual,
cv_group, trade_name, genus_id

	
class bauble.plugins.plants.species.SpeciesSynonym(synonym=None, **kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

	Table name:	species_synonym

	
class bauble.plugins.plants.species.VernacularName(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base, bauble.db.Serializable

	Table name:	vernacular_name

	Columns:	
	name:

	the vernacular name

	language:

	language is free text and could include something like UK
or US to identify the origin of the name

	species_id:

	key to the species this vernacular name refers to

	Properties:	

	Constraints:	

	
class bauble.plugins.plants.species.DefaultVernacularName(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

	Table name:	default_vernacular_name

DefaultVernacularName is not meant to be instantiated directly.
Usually the default vernacular name is set on a species by setting
the default_vernacular_name property on Species to a
VernacularName instance

	Columns:	
	id:

	Integer, primary_key

	species_id:

	foreign key to species.id, nullable=False

vernacular_name_id:

	Properties:	

	Constraints:	

	
class bauble.plugins.plants.SpeciesDistribution(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

	Table name:	species_distribution

	Columns:	

	Properties:	

	Constraints:	

	
class bauble.plugins.plants.Geography(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

Represents a geography unit.

	Table name:	geography

	Columns:	name:

tdwg_code:

iso_code:

parent_id:

	Properties:	children:

	Constraints:	

bauble.plugins.garden

	
class bauble.plugins.garden.Accession(*args, **kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base, bauble.db.Serializable

	Table name:	accession

	Columns:	
	code: sqlalchemy.types.Unicode

	the accession code

	prov_type: bauble.types.Enum

	the provenance type

	Possible values:

	
	first column of prov_type_values

	wild_prov_status: bauble.types.Enum

	this column can be used to give more provenance
information

	Possible values:

	
	union of first columns of wild_prov_status_values,

	purchase_prov_status_values,

	cultivated_prov_status_values

	date_accd: bauble.types.Date

	the date this accession was accessioned

	id_qual: bauble.types.Enum

	The id qualifier is used to indicate uncertainty in the
identification of this accession

	Possible values:

	
	aff. - affinity with

	cf. - compare with

	forsan - perhaps

	near - close to

	? - questionable

	incorrect

	id_qual_rank: sqlalchemy.types.Unicode

	The rank of the species that the id_qaul refers to.

	private: sqlalchemy.types.Boolean

	Flag to indicate where this information is sensitive and
should be kept private

	species_id: sqlalchemy.types.Integer()

	foreign key to the species table

	Properties:	
	species:

	the species this accession refers to

	source:

	source is a relation to a Source instance

	plants:

	a list of plants related to this accession

	verifications:

	a list of verifications on the identification of this accession

	Constraints:	

	
class bauble.plugins.garden.accession.AccessionNote(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base, bauble.db.Serializable

Notes for the accession table

	
class bauble.plugins.garden.Plant(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base, bauble.db.Serializable, bauble.db.DefiningPictures

	Table name:	plant

	Columns:	
	code: sqlalchemy.types.Unicode

	The plant code

	acc_type: bauble.types.Enum

	The accession type

	Possible values:

	
	Plant: Whole plant

	Seed/Spore: Seed or Spore

	Vegetative Part: Vegetative Part

	Tissue Culture: Tissue culture

	Other: Other, probably see notes for more information

	None: no information, unknown

	accession_id: sqlalchemy.types.Integer

	Required.

	location_id: sqlalchemy.types.Integer

	Required.

	Properties:	
	accession:

	The accession for this plant.

	location:

	The location for this plant.

	notes:

	The notes for this plant.

	Constraints:	The combination of code and accession_id must be unique.

	
classmethod get_delimiter(refresh=False)

	Get the plant delimiter from the BaubleMeta table.

The delimiter is cached the first time it is retrieved. To refresh
the delimiter from the database call with refresh=True.

	
class bauble.plugins.garden.plant.PlantNote(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base, bauble.db.Serializable

	
class bauble.plugins.garden.plant.PlantChange(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

	
class bauble.plugins.garden.plant.PlantStatus(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

date: date checked
status: status of plant
comment: comments on check up
checked_by: person who did the check

	
class bauble.plugins.garden.Location(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base, bauble.db.Serializable

	Table name:	location

	Columns:	name:

description:

	Relation:	plants:

	
class bauble.plugins.garden.propagation.Propagation(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

	
class bauble.plugins.garden.propagation.PropRooted(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

Rooting dates for cutting

	
class bauble.plugins.garden.propagation.PropCutting(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

A cutting

	
class bauble.plugins.garden.propagation.PropSeed(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

	
class bauble.plugins.garden.source.Source(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

	
class bauble.plugins.garden.source.SourceDetail(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

	
class bauble.plugins.garden.source.Collection(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

	Table name:	collection

	Columns:	collector: sqlalchemy.types.Unicode

collectors_code: sqlalchemy.types.Unicode

date: sqlalchemy.types.Date

locale: sqlalchemy.types.UnicodeText

latitude: sqlalchemy.types.Float

longitude: sqlalchemy.types.Float

gps_datum: sqlalchemy.types.Unicode

geo_accy: sqlalchemy.types.Float

elevation: sqlalchemy.types.Float

elevation_accy: sqlalchemy.types.Float

habitat: sqlalchemy.types.UnicodeText

geography_id: sqlalchemy.types.Integer

notes: sqlalchemy.types.UnicodeText

accession_id: sqlalchemy.types.Integer

	Properties:	

	Constraints:	

	
class bauble.plugins.garden.accession.Verification(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

	Table name:	verification

	Columns:	
	verifier: sqlalchemy.types.Unicode

	The name of the person that made the verification.

	date: sqlalchemy.types.Date

	The date of the verification

	reference: sqlalchemy.types.UnicodeText

	The reference material used to make this verification

	level: sqlalchemy.types.Integer

	Determines the level or authority of the verifier. If it is
not known whether the name of the record has been verified by
an authority, then this field should be None.

	Possible values:

	
	0: The name of the record has not been checked by any authority.

	1: The name of the record determined by comparison with
other named plants.

	2: The name of the record determined by a taxonomist or by
other competent persons using herbarium and/or library and/or
documented living material.

	3: The name of the plant determined by taxonomist engaged in
systematic revision of the group.

	4: The record is part of type gathering or propagated from
type material by asexual methods

	notes: sqlalchemy.types.UnicodeText

	Notes about this verification.

	accession_id: sqlalchemy.types.Integer

	Foreign Key to the Accession table.

	species_id: sqlalchemy.types.Integer

	Foreign Key to the Species table.

	prev_species_id: Integer

	Foreign key to the Species
table. What it was verified from.

	
class bauble.plugins.garden.accession.Voucher(**kwargs)

	Bases: sqlalchemy.ext.declarative.api.Base

	Table name:	voucher

	Columns:	
	herbarium: sqlalchemy.types.Unicode

	The name of the herbarium.

	code: sqlalchemy.types.Unicode

	The herbarium code.

	parent_material: sqlalchemy.types.Boolean

	Is this voucher the parent material of the accession. E.g did
the seed for the accession from come the plant used to make
this voucher.

	accession_id: sqlalchemy.types.Integer

	A foreign key to Accession

bauble.plugins.abcd

	
bauble.plugins.abcd.validate_xml(root)

	Validate root against ABCD 2.06 schema

	Parameters:	root – root of an XML tree to validate against

	Returns:	True or False depending if root validates correctly

	
bauble.plugins.abcd.create_abcd(decorated_objects, authors=True, validate=True)

	

	Parameters:	
	objects – a list/tuple of objects that implement the ABCDDecorator
interface

	authors – flag to control whether to include the authors in the
species name

	validate – whether we should validate the data before returning

	Returns:	a valid ABCD ElementTree

	
class bauble.plugins.abcd.ABCDAdapter(obj)

	An abstract base class for creating ABCD adapters.

	
extra_elements(unit)

	Add extra non required elements

	
get_AuthorTeam()

	Get the Author string.

	
get_FirstEpithet()

	Get the first epithet.

	
get_FullScientificNameString(authors=True)

	Get the full scientific name string.

	
get_GenusOrMonomial()

	Get the Genus string.

	
get_InformalNameString()

	Get the common name string.

	
get_UnitID()

	Get a value for the UnitID

	
get_family()

	Get a value for the family.

	
class bauble.plugins.abcd.ABCDExporter

	Export Plants to an ABCD file.

bauble.plugins.imex

bauble.plugins.report

bauble.plugins.report.xsl

The PDF report generator module.

This module takes a list of objects, get all the plants from the
objects, converts them to the ABCD XML format, transforms the ABCD
data to an XSL formatting stylesheet and uses a XSL-PDF renderer to
convert the stylesheet to PDF.

bauble.plugins.report.mako

bauble.plugins.tag

	
bauble.plugins.tag.remove_callback(tags)

	

	Parameters:	tags – a list of Tag objects.

	
bauble.plugins.tag.get_tagged_objects(tag, session=None)

	Return all object tagged with tag.

	Parameters:	
	tag – A string or Tag

	session –

	
bauble.plugins.tag.untag_objects(name, objs)

	Remove the tag name from objs.

	Parameters:	
	name (str) – The name of the tag

	objs (list) – The list of objects to untag.

	
bauble.plugins.tag.tag_objects(name, objs)

	Tag a list of objects.

	Parameters:	
	name (str) – The tag name, if it’s a str object then it will be
converted to unicode() using the default encoding. If a tag with
this name doesn’t exist it will be created

	obj (list) – A list of mapped objects to tag.

	
bauble.plugins.tag.get_tag_ids(objs)

	

	Parameters:	objs – a list or tuple of objects

Return a list of tag id’s for tags associated with obj, only returns those
tag ids that are common between all the objs

	
class bauble.plugins.tag.Tag(**kwargs)

	

	Table name:	tag

	Columns:	
	tag: sqlalchemy.types.Unicode

	The tag name.

	description: sqlalchemy.types.Unicode

	A description of this tag.

	
class bauble.plugins.tag.TaggedObj(**kwargs)

	

	Table name:	tagged_obj

	Columns:	
	obj_id: sqlalchemy.types.Integer

	The id of the tagged object.

	obj_class: sqlalchemy.types.Unicode

	The class name of the tagged object.

	tag_id: sqlalchemy.types.Integer

	A ForeignKey to Tag.

	
class bauble.plugins.tag.TagItemGUI(values)

	Interface for tagging individual items in the results of the SearchView

 Copyright 2004-2012, Brett Adams; 2012-2015, Mario Frasca.
 Last updated on Aug 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Bauble 1.0.48 documentation

 Python Module Index

 b

 			

 		
 b	

 	[image: -]
 	
 bauble	

 	
 	
 bauble.btypes	

 	
 	
 bauble.connmgr	

 	
 	
 bauble.db	

 	
 	
 bauble.editor	

 	
 	
 bauble.i18n	

 	
 	
 bauble.meta	

 	
 	
 bauble.paths	

 	
 	
 bauble.pluginmgr	

 	
 	
 bauble.plugins.abcd	

 	
 	
 bauble.plugins.garden	

 	
 	
 bauble.plugins.imex	

 	
 	
 bauble.plugins.plants	

 	
 	
 bauble.plugins.report	

 	
 	
 bauble.plugins.report.mako	

 	
 	
 bauble.plugins.report.xsl	

 	
 	
 bauble.plugins.tag	

 	
 	
 bauble.prefs	

 	
 	
 bauble.task	

 	
 	
 bauble.ui	

 	
 	
 bauble.utils	

 	
 	
 bauble.view	

 Copyright 2004-2012, Brett Adams; 2012-2015, Mario Frasca.
 Last updated on Aug 18, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Bauble 1.0.48 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

A

 	

 	ABCDAdapter (class in bauble.plugins.abcd)

 	ABCDExporter (class in bauble.plugins.abcd)

 	Accession (class in bauble.plugins.garden)

 	AccessionNote (class in bauble.plugins.garden.accession)

 	Action (class in bauble.view)

 	add_expander() (bauble.view.InfoBox method)

 	

 	(bauble.view.InfoBoxPage method)

 	add_menu() (bauble.ui.GUI method)

 	add_message_box() (in module bauble.utils)

 	

 	add_note() (bauble.editor.NotesPresenter method)

 	add_problem() (bauble.editor.GenericEditorPresenter method)

 	add_to_history() (bauble.ui.GUI method)

 	add_to_insert_menu() (bauble.ui.GUI method)

 	assign_completions_handler() (bauble.editor.GenericEditorPresenter method)

 	assign_simple_handler() (bauble.editor.GenericEditorPresenter method)

 	attach_completion() (bauble.editor.GenericEditorView method)

 	attach_response() (bauble.editor.GenericModelViewPresenterEditor method)

B

 	

 	Base (in module bauble.db)

 	bauble (module)

 	bauble.btypes (module)

 	bauble.connmgr (module)

 	bauble.db (module)

 	bauble.db.Base (in module bauble.db)

 	bauble.db.metadata (in module bauble.db)

 	bauble.editor (module)

 	bauble.i18n (module)

 	bauble.meta (module)

 	bauble.paths (module)

 	bauble.pluginmgr (module)

 	bauble.plugins.abcd (module)

 	bauble.plugins.garden (module)

 	

 	bauble.plugins.imex (module)

 	bauble.plugins.plants (module)

 	bauble.plugins.report (module)

 	bauble.plugins.report.mako (module)

 	bauble.plugins.report.xsl (module)

 	bauble.plugins.tag (module)

 	bauble.prefs (module)

 	bauble.task (module)

 	bauble.ui (module)

 	bauble.utils (module)

 	bauble.view (module)

 	bauble.view.SearchView.ViewMeta (class in bauble.view)

 	BaubleMeta (class in bauble.meta)

 	build_tools_menu() (bauble.ui.GUI method)

C

 	

 	check_parameters_valid() (bauble.connmgr.ConnectionManager method)

 	cleanup() (bauble.editor.GenericEditorPresenter method)

 	

 	(bauble.editor.GenericEditorView method)

 	clear_menu() (bauble.ui.GUI method)

 	clear_messages() (in module bauble.task)

 	clear_model() (in module bauble.utils)

 	clear_problems() (bauble.editor.GenericEditorPresenter method)

 	Collection (class in bauble.plugins.garden.source)

 	combo_get_value_iter() (in module bauble.utils)

 	combo_set_active_text() (in module bauble.utils)

 	command_handler() (in module bauble)

 	CommandHandler (class in bauble.pluginmgr)

 	commit_changes() (bauble.editor.GenericModelViewPresenterEditor method)

 	

 	compare_prefs_to_saved() (bauble.connmgr.ConnectionManager method)

 	config_version_pref (in module bauble.prefs)

 	connect() (bauble.editor.GenericEditorView method)

 	connect_after() (bauble.editor.GenericEditorView method)

 	ConnectionManager (class in bauble.connmgr)

 	create() (in module bauble.db)

 	create_abcd() (in module bauble.plugins.abcd)

 	create_main_menu() (bauble.ui.GUI method)

 	create_message_details_dialog() (in module bauble.utils)

 	create_message_dialog() (in module bauble.utils)

 	create_yes_no_dialog() (in module bauble.utils)

D

 	

 	Date (class in bauble.btypes)

 	date_format_pref (in module bauble.prefs)

 	DateTime (class in bauble.btypes)

 	default_completion_cell_data_func() (in module bauble.editor)

 	default_completion_match_func() (in module bauble.editor)

 	

 	default_prefs_file (in module bauble.prefs)

 	DefaultVernacularName (class in bauble.plugins.plants.species)

 	delete_or_expunge() (in module bauble.utils)

 	disconnect_all() (bauble.editor.GenericEditorView method)

E

 	

 	engine (in module bauble.db)

 	Enum (class in bauble.btypes)

 	

 	enum_values_str() (in module bauble.utils)

 	extra_elements() (bauble.plugins.abcd.ABCDAdapter method)

F

 	

 	Family (class in bauble.plugins.plants)

 	FamilySynonym (class in bauble.plugins.plants.family)

 	

 	find_dependent_tables() (in module bauble.utils)

 	FloatOrNoneStringValidator (class in bauble.editor)

G

 	

 	GenericEditorPresenter (class in bauble.editor)

 	GenericEditorView (class in bauble.editor)

 	GenericMessageBox (class in bauble.utils)

 	GenericModelViewPresenterEditor (class in bauble.editor)

 	Genus (class in bauble.plugins.plants)

 	GenusSynonym (class in bauble.plugins.plants.genus)

 	Geography (class in bauble.plugins.plants)

 	get_AuthorTeam() (bauble.plugins.abcd.ABCDAdapter method)

 	get_default() (in module bauble.meta)

 	get_delimiter() (bauble.plugins.garden.Plant class method)

 	get_distinct_values() (in module bauble.utils)

 	get_expander() (bauble.view.InfoBoxPage method)

 	get_family() (bauble.plugins.abcd.ABCDAdapter method)

 	get_FirstEpithet() (bauble.plugins.abcd.ABCDAdapter method)

 	

 	get_FullScientificNameString() (bauble.plugins.abcd.ABCDAdapter method)

 	get_GenusOrMonomial() (bauble.plugins.abcd.ABCDAdapter method)

 	get_InformalNameString() (bauble.plugins.abcd.ABCDAdapter method)

 	get_invalid_columns() (in module bauble.utils)

 	get_passwd() (bauble.connmgr.ConnectionManager method)

 	get_tag_ids() (in module bauble.plugins.tag)

 	get_tagged_objects() (in module bauble.plugins.tag)

 	get_UnitID() (bauble.plugins.abcd.ABCDAdapter method)

 	get_urls() (in module bauble.utils)

 	get_view() (bauble.ui.GUI method)

 	get_window() (bauble.editor.GenericEditorView method)

 	GUI (class in bauble.ui)

 	gui (in module bauble)

H

 	

 	has_problems() (bauble.editor.GenericEditorPresenter method)

 	History (class in bauble.db)

 	

 	HistoryExtension (class in bauble.db)

I

 	

 	ilike() (in module bauble.utils)

 	InfoBox (class in bauble.view)

 	InfoBoxPage (class in bauble.view)

 	InfoExpander (class in bauble.view)

 	init() (bauble.pluginmgr.Plugin class method)

 	

 	(in module bauble.pluginmgr)

 	

 	init_enum_combo() (bauble.editor.GenericEditorPresenter method)

 	init_translatable_combo() (bauble.editor.GenericEditorView method)

 	install() (bauble.pluginmgr.Plugin class method)

 	

 	(in module bauble.pluginmgr)

 	IntOrNoneStringValidator (class in bauble.editor)

 	is_dirty() (bauble.editor.GenericEditorPresenter method)

L

 	

 	lib_dir() (in module bauble.paths)

 	LinksExpander (class in bauble.view)

 	load() (in module bauble.pluginmgr)

 	

 	locale_dir() (in module bauble.paths)

 	Location (class in bauble.plugins.garden)

M

 	

 	main() (in module bauble)

 	main_dir() (in module bauble.paths)

 	main_is_frozen() (in module bauble)

 	make_label_clickable() (in module bauble.utils)

 	MapperBase (class in bauble.db)

 	

 	MapperSearch (class in bauble.search)

 	message_details_dialog() (in module bauble.utils)

 	message_dialog() (in module bauble.utils)

 	MessageBox (class in bauble.utils)

 	metadata (bauble.db attribute)

N

 	

 	natsort_key() (in module bauble.utils)

 	

 	NotesPresenter (class in bauble.editor)

O

 	

 	on_changed_name_combo() (bauble.connmgr.ConnectionManager method)

 	on_changed_type_combo() (bauble.connmgr.ConnectionManager method)

 	on_check_toggled() (bauble.editor.GenericEditorPresenter method)

 	on_datetime_entry_changed() (bauble.editor.GenericEditorPresenter method)

 	on_dialog_close() (bauble.editor.GenericEditorView method)

 	on_dialog_response() (bauble.connmgr.ConnectionManager method)

 	

 	(bauble.editor.GenericEditorView method)

 	on_file_menu_open() (bauble.ui.GUI method)

 	

 	on_go_button_clicked() (bauble.ui.GUI method)

 	on_remove_button_clicked() (bauble.connmgr.ConnectionManager method)

 	on_switch_page() (bauble.view.InfoBox method)

 	on_text_entry_changed() (bauble.editor.GenericEditorPresenter method)

 	on_tools_menu_item_activate() (bauble.ui.GUI method)

 	on_window_delete() (bauble.editor.GenericEditorView method)

 	open() (in module bauble.db)

P

 	

 	parameters_to_uri() (bauble.connmgr.ConnectionManager method)

 	parse_dayfirst_pref (in module bauble.prefs)

 	parse_string() (bauble.search.SearchParser method)

 	parse_yearfirst_pref (in module bauble.prefs)

 	Plant (class in bauble.plugins.garden)

 	PlantChange (class in bauble.plugins.garden.plant)

 	PlantNote (class in bauble.plugins.garden.plant)

 	

 	PlantStatus (class in bauble.plugins.garden.plant)

 	Plugin (class in bauble.pluginmgr)

 	Propagation (class in bauble.plugins.garden.propagation)

 	PropCutting (class in bauble.plugins.garden.propagation)

 	PropertiesExpander (class in bauble.view)

 	PropRooted (class in bauble.plugins.garden.propagation)

 	PropSeed (class in bauble.plugins.garden.propagation)

Q

 	

 	QueryBuilder (class in bauble.search)

 	queue() (in module bauble.task)

 	

 	quit() (in module bauble)

R

 	

 	range_builder() (in module bauble.utils)

 	refresh_view() (bauble.editor.GenericEditorPresenter method)

 	register_command() (in module bauble.pluginmgr)

 	remove_callback() (in module bauble.plugins.tag)

 	remove_connection() (bauble.connmgr.ConnectionManager method)

 	

 	remove_expander() (bauble.view.InfoBoxPage method)

 	remove_problem() (bauble.editor.GenericEditorPresenter method)

 	reset_sequence() (in module bauble.utils)

 	restore_state() (bauble.editor.GenericEditorView method)

S

 	

 	save_current_to_prefs() (bauble.connmgr.ConnectionManager method)

 	save_state() (bauble.editor.GenericEditorView method)

 	

 	(bauble.ui.GUI method)

 	(in module bauble)

 	search() (bauble.search.MapperSearch method)

 	

 	(bauble.search.SearchStrategy method)

 	search_tree_model() (in module bauble.utils)

 	SearchParser (class in bauble.search)

 	SearchStrategy (class in bauble.search)

 	SearchView (class in bauble.view)

 	Session (in module bauble.db)

 	set_active_connection_by_name() (bauble.connmgr.ConnectionManager method)

 	set_combo_from_value() (in module bauble.utils)

 	set_message() (in module bauble.task)

 	set_model_attr() (bauble.editor.GenericEditorPresenter method)

 	set_view() (bauble.ui.GUI method)

 	

 	set_widget_value() (bauble.editor.GenericEditorView method)

 	

 	(bauble.view.InfoExpander method)

 	(in module bauble.utils)

 	setup_date_button() (in module bauble.utils)

 	setup_text_combobox() (in module bauble.utils)

 	show_message_box() (bauble.ui.GUI method)

 	Source (class in bauble.plugins.garden.source)

 	SourceDetail (class in bauble.plugins.garden.source)

 	Species (class in bauble.plugins.plants)

 	SpeciesDistribution (class in bauble.plugins.plants)

 	SpeciesSynonym (class in bauble.plugins.plants.species)

 	start() (bauble.connmgr.ConnectionManager method)

 	

 	(bauble.editor.GenericEditorPresenter method)

 	statusbar_clear() (bauble.ui.GUI method)

 	StringOrNoneValidator (class in bauble.editor)

T

 	

 	Tag (class in bauble.plugins.tag)

 	tag_objects() (in module bauble.plugins.tag)

 	TaggedObj (class in bauble.plugins.tag)

 	TagItemGUI (class in bauble.plugins.tag)

 	

 	to_unicode() (in module bauble.utils)

 	Tool (class in bauble.pluginmgr)

 	topological_sort() (in module bauble.utils)

 	tree_model_has() (in module bauble.utils)

U

 	

 	UnicodeOrNoneValidator (class in bauble.editor)

 	units_pref (in module bauble.prefs)

 	untag_objects() (in module bauble.plugins.tag)

 	

 	update() (bauble.view.InfoBox method)

 	

 	(bauble.view.InfoBoxPage method)

 	(bauble.view.InfoExpander method)

 	(bauble.view.PropertiesExpander method)

 	user_dir() (in module bauble.paths)

 	utf8() (in module bauble.utils)

V

 	

 	validate_xml() (in module bauble.plugins.abcd)

 	Validator (class in bauble.editor)

 	ValidatorError (class in bauble.editor)

 	Verification (class in bauble.plugins.garden.accession)

 	verify_connection() (in module bauble.db)

 	

 	VernacularName (class in bauble.plugins.plants.species)

 	version (in module bauble)

 	View (class in bauble.pluginmgr)

 	Voucher (class in bauble.plugins.garden.accession)

W

 	

 	which() (in module bauble.utils)

 	

 	working_dbtypes (bauble.connmgr.ConnectionManager attribute)

X

 	

 	xml_safe() (in module bauble.utils)

 	

 	xml_safe_utf8() (in module bauble.utils)

Y

 	

 	yes_no_dialog() (in module bauble.utils)

 	

 	YesNoMessageBox (class in bauble.utils)

 Copyright 2004-2012, Brett Adams; 2012-2015, Mario Frasca.
 Last updated on Aug 18, 2015.
 Created using Sphinx 1.3.1.

 _static/comment.png

_static/plus.png

_static/comment-bright.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

_images/python3.png
Python 279 Setup
Customize Python 2.7.9

Select the way you want features to be instaled.
Ciick on the icons in the tree below to change the
way features wil be nstaled.

5[Regiter Extensions
S Tamc

‘S| bocumentation
‘S| utity Serpts

2l
5] Test sute

=24 Add python.exe to Path
ERT on locol hard di

Prepend Ci Entire feature wil be installed on local
variable. Thig
command pr| X Entire feature will be unavailable

python

‘This feature requires 0KB on your hard drive.

windows

[DiskUsage | [Advanced <Back | Next> | [Cancel

_static/down.png

_static/file.png

_static/up-pressed.png

_images/git3.png
4 Git Setup

Adjusting your PATH environment
How would you lke to use Git from the command ne?

Use Git from Git Bash only.

This s the safest choice as your PATH wilnot be modified atal. You il only be
able to use the Gt command Ine tooks from Git Bash.

Use Git from the Windows Command Prompt

This option i considered safe 2s it only adds some minimal Git wrappers to your
PATH to avoid cutiering your environment with optional Uni tooks. You willbe
able to use Git from both Gt Bash and the Windows Command Prompt.

Use Git and optional Unix tools from the Windows Command Prompt.

Both Git and the optional Lix tooks wil be added to your PATH.
is will override Windows tools like "find” and "sort". Only
use this option if you understand the implications.

_images/qb-choose_domain.png
Query B
Search Domain
Choose a search dom:

Expressions

cancel oK

_images/pygtk1.png
1 Python 27 PyGTK22405et0p o @ [=)|

I neas OV R

Insal everyting you
S Will be installed on local hard drive -
Entire feature wil be installed on local hard drive _ | EJE1Eeta)
S+ Prcaro 1.8.10 =
X | PyGtSourcelien2 2.10.1
e promcnos2 Ths et eaures 36
rovg onyour t
x PrRegzt 20f 3aubfeatures
X <[Ders Secin selcted. The subfeatures
X | Glade Ul Designer 3.8.0 require 165MB on your
X ~] Language Tooks | herddrive,
Python 2.7 nstal for l users):

Copython27\

[meset][Dskusage | sacc [vext] [conce

_static/ajax-loader.gif

_images/bauble-create-new-0.7.png
BaubIe

Would you like to create a new Bauble database at the current
connection?

Warning: If there s already a database at this connection any
existing data will be destroyed!

_images/bauble-closed-conn-dialog-0.7.0.png
BaubIe

{»Bauble

biodiversity collection manager

test B

4 Add‘ ‘ = Emuve‘

D connection Details

_images/export-to-json.png
export based on:
®
O taxa
D accessions
7 plants
export includes:
@ all referred to objects
7 also objects referring to selection
output:

oK Cancel

_images/qb-choose_property.png
Query B
Search Domain

(genss

Expressions

Choose a property.

&

Cancel

oK

_static/bauble-32.png

_static/minus.png

