

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Bauble 1.0 documentation

Documentation for Bauble 1.0

[image: https://travis-ci.org/Bauble/bauble.classic.svg?branch=bauble-1.0]
Bauble is an application for managing botanical specimen collections.
With it you can create a searchable database of plant records.

It is open [http://www.opensource.org] and free [http://www.fsf.org]
and is released under the GNU Public License [http://www.fsf.org/licensing/licenses/gpl.html]

	not-so-brief list of highlights, meant to whet your appetite.

Installing Bauble

	Installation
	Installing on Linux

	Installing on MacOSX

	Installing on Windows

	Troubleshooting the Install

Using Bauble

	Getting Started
	Connecting to a database

	Creating a new database

	Searching in Bauble
	The Query Builder

	The Query Language

	Editing and Inserting Data
	Notes

	Family

	Genus

	Species/Taxon

	Accessions

	Plant

	Locations

	Tagging

	Generating reports
	Using the Mako Report Formatter

	Using the XSL Report Formatter

	Importing and Exporting Data
	Importing from CSV

	Exporting to CSV

	Managing Users
	Creating Users

	Permissions

Bauble Development

	Downloading the source

	Building the source
	Building (on Windows)

	Extending Bauble with Plugins

	API Documentation
	bauble

	bauble.db

	bauble.connmgr

	bauble.editor

	bauble.i18n

	bauble.ui

	bauble.meta

	bauble.paths

	bauble.pluginmgr

	bauble.prefs

	bauble.task

	bauble.types

	bauble.utils

	bauble.view

	bauble.search

	bauble.plugins.plants

	bauble.plugins.garden

	bauble.plugins.abcd

	bauble.plugins.imex

	bauble.plugins.report

	bauble.plugins.report.xsl

	bauble.plugins.report.mako

	bauble.plugins.tag

Supporting Bauble

[image: https://pledgie.com/campaigns/29188.png]
If you’re using Bauble, or if you feel like helping its development anyway,
please consider donating [https://pledgie.com/campaigns/29188]

 Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0 documentation

not-so-brief list of highlights, meant to whet your appetite.

When you first start Bauble, and connect to a database, Bauble will
initialize the database not only with all tables it needs to run, but it
will also populate the taxon tables for ranks family and genus, using the
data from the “RBG Kew’s Family and Genera list from Vascular Plant Families
and Genera compiled by R. K. Brummitt and published by the Royal Botanic
Gardens, Kew in 1992”. In 2015 we have reviewed the data regarding the
Orchidaceae, using “Tropicos, botanical information system at the Missouri
Botanical Garden - www.tropicos.org” as a source.

Bauble will let you import any data you put in an intermediate json
format. What you import will complete what you already have in the
database. If you need help, you can ask some Bauble professional to help you
transform your data into Bauble’s intermediate json format.

Bauble will allow you define synonyms for species, genera, families. Also
this information can be represented in its intermediate json format and be
imported in an existing Bauble database.

Bauble implements the concept of ‘accession’, intermediate between physical
plant (or a group thereof) and abstract taxon. Each accession can associate
the same plants to different taxa, if two taxonomists do not agree on the
identification: each taxonomist can have their say and do not need overwrite
each other’s work. All verifications can be found back in the database, with
timestamp and signature.

Bauble allows you associate pictures to physical plants, this can help
recognize the plant in case a sticker is lost, or help taxonomic
identification if a taxonomist is not available at all times.

Bauble will let you export a report in whatever textual format you need. It
uses a powerful templating engine named ‘mako’, which will allow you export
the data in a selection to whatever format you need. Once installed, a
couple of examples are available in the mako subdirectory.

You can associate notes to plants, accessions, species, Notes can be
categorized and used in searches or reports.

Management of plant locations.

All changes in the database is stored in the database, as history log. All
changes are ‘signed’ and time-stamped. Bauble makes it easy to retrieve the
list of all changes in the last working day or week, or in any specific
period in the past.

Bauble allows you search the database using simple keywords, e.g.: the name
of the location or a genus name, or you can write more complex queries,
which do not reach the complexity of SQL but allow you a decent level of
detail localizing your data.

Bauble is not a database management system, so it does not reinvent the
wheel. It works storing its data in a SQL database, and it will connect to
any database management systen which accepts a SQLAlchemy connector. This
means any reasonably modern database system and includes MySQL, PostgreSQL,
Oracle. It can also work with sqlite, which, for single user purposes is
quite sufficient and efficient. If you connect Bauble to a real database
system, you can consider making the database part of a LAMP system
(Linux-Apache-MySQL-Php) and include your live data on your institution web
site.

The program was born in English and all its technical and user documentation
is still only in that language, but the program itself has been translated
and can be used in various other languages, including Spanish (86%),
Portuguese (100%), French (42%), to name some Southern American languages,
as well as Swedish (100%) and Czech (100%).

Installing Bauble on Windows is an easy and linear process, it will not take
longer than 10 minutes. Bauble was born on Linux and installing it on
ubuntu, fedora or debian is also rather simple. It has been recently
successfully tested on MacOSX 10.9.

The installation process will produce an updatable installation, where
updating it will take less than one minute. Depending on the amount of
feedback we receive, we will produce updates every few days or once in a
while.

Bauble is continuously and extensively unit tested, something that makes
regression of functionality close to impossible. Every update is
automatically quality checked, on the Travis Continuous Integration
service. Integration of TravisCI with the github platform will make it
difficult for us to release anything which has a single failing unit test.

Most changes and additions we make, come with some extra unit test, which
defines the behaviour and will make any undesired change easily visible.

Bauble is extensible through plugins and can be customized to suit the needs
of the institution.

 Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0 documentation

Installation

bauble.classic is a cross-platform program and it will run on unix machines
like Linux and MacOSX, as well as on Windows.

To install Bauble first requires that you install its dependencies that
cannot be installed automatically. These include virtualenvwrapper, PyGTK
and pip. Python and GTK+, you probably already have. As long as you have
these packages installed then Bauble should be able to install the rest of
its dependencies by itself.

Note

If you follow these installation steps, you will end with Bauble
running within a Python virtual environment, all Python
dependencies installed locally, non conflicting with any other
Python program you may have on your system.

if you later choose to remove Bauble, you simply remove the
virtual environment, which is a directory, with all of its
content.

Installing on Linux

	Download the devinstall.sh script and run it:

https://raw.githubusercontent.com/Bauble/bauble.classic/master/scripts/devinstall.sh

Please not that the script will not help you install any extra database
connector. This you will do in a later step.

You can study the script to see what steps if runs for you. In short it
will install dependencies which can’t be satisfied in a virtual
environment, then it will create a virtual environment named bacl,
download the sources and connect your git checkout to the bauble-1.0
branch (this you can consider a production line), it then builds bauble,
downloading all remaining dependencies, and finally it creates a startup
script in your ~/bin folder.

If the script ends without error, you can now start bauble:

~/bin/bauble

or update bauble to the latest released production patch:

~/bin/bauble -u

The same script you can use to switch to a different production line, but
at the moment there’s only bauble-1.0.

	on Unity, open a terminal, start bauble, its icon will show up in the
launcher, you can now lock to launcher it.

	If you would like to use the default SQLite [http://sqlite.org/]
database or you don’t know what this means then you can skip this step.
If you would like to use a database backend other than the default SQLite
backend then you will also need to install a database connector.

If you would like to use a PostgreSQL [http://www.postgresql.org]
database then activate the virtual environment and install psycopg2 with
the following commands:

source ~/.virtualenvs/bacl/bin/activate
pip install -U psycopg2

You might need solve dependencies. How to do so, depends on which Linux
flavour you are using. Check with your distribution documentation.

Next...

Connecting to a database.

Installing on MacOSX

Being MacOSX a unix environment, most things will work the same as on Linux
(sort of).

One difficulty is that there are many more versions of MacOSX out
there than one would want to support, and only the current and its
immediately preceding release are kept up-to-date by Apple-the-firm.

Last time we tested, some of the dependencies could not be installed on
MacOSX 10.5 and we assume similar problems would present themselves on older
OSX versions. Bauble has been successfully tested with 10.7 and 10.9.

First of all, you need things which are an integral part of a unix
environment, but which are missing in a off-the-shelf mac:

	developers tools: xcode. check the wikipedia page for the version
supported on your mac.

	package manager: homebrew (tigerbrew for older OSX versions).

with the above installed, run:

brew doctor

make sure you understand the problems it reports, and correct them. pygtk
will need xquartz and brew will not solve the dependency
automatically. either install xquartz using brew or the way you prefer:

brew install Caskroom/cask/xquartz

then install the remaining dependencies:

brew install git
brew install pygtk # takes time and installs all dependencies

follow all instructions on how to activate what you have installed.

the rest is just as on a normal unix machine, and we have a devinstall.sh
script for it. Read the above Linux instructions, follow them, enjoy.

Next...

Connecting to a database.

Installing on Windows

The Windows installer used to be a “batteries-included” installer,
installing everything needed to run Bauble. The current maintainer
of bauble.classic cannot run Windows applications. If you want to
run the latest version of bauble on Windows: download and install
the dependencies and then install Bauble from the source package.

Please report any trouble and help with packaging will be very
welcome.

Note

Bauble has been tested with and is known to work on W-XP, W-7 and
W-8. Although it should work fine on other versions Windows it has not
been thoroughly tested.

the installation steps on Windows:

	download and install git (comes with a unix-like sh and includes
vi).

	download and install Python 2.x (32bit) from:

http://www.python.org

Bauble has been developed and tested using Python 2.x. It will
definitely not run on Python 3.x. If you are interested in helping
port to Python 3.x, please contact the Bauble maintainers.

when installing Python, do put Python in the PATH.

	download pygtk from the following source. (this requires 32bit
python). be sure you download the “all in one” version. make a complete
install, selecting everything:

http://ftp.gnome.org/pub/GNOME/binaries/win32/pygtk/

	(optional) download and install a database connector other than
sqlite3.

On Windows, it is NOT easy to install psycopg2 from sources, using
pip, so “avoid the gory details” and use a pre-compiled pagkage from:

http://initd.org/psycopg/docs/install.html

	install virtualenv (using pip)

	cd to your HOME dir, create the virtual environment, call it bacl and activate it:

virtualenv --system-site-packages .virtualenvs\bacl
.virtualenvs\bacl\Scripts\activate.bat

	cd to where you want to get bauble.classic. a good choice would be:

Local\github\Bauble\

	download the bauble.classic sources (using git) from:

http://www.github.com/Bauble/bauble.classic/

	cd into the newly created bauble.classic directory.

	choose the development line you plan to follow, for example 1.0, build, install:

git checkout bauble-1.0
python setup.py build
python setup.py install

	create a bauble.bat file in your HOME dir, with this content:

call .virtualenvs\bacl\Scripts\activate.bat
pythonw .virtualenvs\bacl\Scripts\bauble

	create a vbs file in your HOME dir, with this content:

CreateObject("Wscript.Shell").Run "bauble.bat", 0, True

	create a shortcut to the vbs file in the same HOME dir.

	modify the icon of the shortcut, rename it as of your tastes.

	drag and drop the shortcut into the Start Menu.

	the following two, you will do regularly, to stay up-to-date with the
development line you chose to follow:

git pull
python setup.py install

If you would like to generate and print PDF reports using Bauble’s
default report generator then you will need to download and install
Apache FOP [http://xmlgraphics.apache.org/fop/]. After extracting
the FOP archive you will need to include the directory you extracted
to in your PATH.

Next...

Connecting to a database.

Troubleshooting the Install

	What are the packages that are installed by Bauble:

The following packages are required by Bauble

	SQLAlchemy

	lxml

The following packages are optional:

	Mako - required by the template based report generator

	gdata - required by the Picasa photos InfoBox

	Couldn’t install lxml.

The lxml packages have to be compile with a C compiler. If you
don’t have a Make sure the libxml and libxsl packages are
installed. Installing the Cython packages. On Linux you will
have to install the gcc package. On Windows there should be a
precompiled version available at
http://pypi.python.org/pypi/lxml/2.1.1

	Couldn’t install gdata.

For some reason the Google’s gdata package lists itself in the
Python Package Index but doesn’t work properly with the
easy_install command. You can download the latest gdata package
from:

http://code.google.com/p/gdata-python-client/downloads/list

Unzip it and run ``python setup.py installw` in the folder you unzip it to.

Next...

Connecting to a database.

 Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0 documentation

Getting Started

Connecting to a database

When you start Bauble the first thing that comes up is the connection dialog.

[image: _images/bauble-closed-conn-dialog-0.7.0.png]
From this dialog you can select the different connection parameters.

If this is the first time that you are starting Bauble then you will
not having any connections to choose from. Click on the add button to
create a new connection.

By default Bauble uses the file-based SQLite database. If you use the
default filename then Bauble creates a database file with the same
name as the connection in ~/.bauble on Linux or Application
Data\Bauble on Windows.

Bauble allows you to connect to any existing database. If you connect
to an empty database a message will popup asking asking you if you
would like to create a new database.

	TODO: If you are connecting to an existing database you can continue to Inserting or Searching

Creating a new database

To create a new database you have to first connect to a database. See
Connecting to a database.

If you are connecting using the default SQLite database backend then Bauble
can handler everything that needs to be done to create a new
database.

If you are connecting to a server based database like PostgreSQL [http://www.postgresql.org] will have to manually create the
database and permissions for the database while Bauble will create the
tables and import the default data set. Creating a database on
aserver based database is beyond the scope of this manual. If you just
got the chills or sick at your stomach I recommend you just stick with
SQLite.

If you have connected to a database that has not yet been initialized
by Bauble then you will get the following dialog:

[image: _images/bauble-create-new-0.7.png]
Be careful because if you have entered the wrong connection parameters
it is possible to overwrite an existing database at this connection.

If you are sure you want to create a database at this connection then
select “Yes”. Bauble will then start creating the database tables and
importing the default data. This can take a minute or two so while all
of the default data is imported into the database so be patient.

XXX. TODO: Once the default database has been created then you are
ready to start inserting or searching...

 Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0 documentation

Searching in Bauble

Searching allows you to view, browse and create reports from your
data. You can perform searches by either entering the queries in the
main search entry or by using the Query Builder to create the queries
for you. The results of Bauble searches are listed in the main window.

The Query Builder

The Query Builder can help you build complex search queries through a
point and click interface. To open the Query Builder click the to the
left of the search entry or select Tools‣Query
Builder from the menu.

After opening the Query Builder you must select a search domain. The
search domain will determine the type of data that is returned and the
properties that you can search. The search domain is similar to a
table in the database and the properties would be the columns on the
table. Often the table/domain and properties/columns are the same but
not always.

Once a search domain is selected you can then select a property of the
domain to compare values to. The search operator can then be changed
for how you want to make the search comparison. Finally you must
enter a value to compare to the search property. If the search
property you have selected can only have specific values then a list
of possible values will be provided for you to choose from.

If multiple search properties are necessary then clicking on the plus
sign will add more search properties. Select And/Or next to the
property name choose how the properties will be combined in the search
query.

When you are done building your query click OK to perform the search.

The Query Language

Three are three types of search queries available in Bauble. You can
search by value, expression or query.

All searches are case insensitive so searching for Maxillaria and
maxillaria will return the same results.

Search by Value

Search by value is the simplest way to search. You just type in a
string and see what matches. Which fields/columns are search for your
string depends on how the different plugins are configured. For
example, by default the PlantPlugin search the family name, the genus
name, the species and infraspecific species names, vernacular names
and geography. So if you want to search in the notes field of any of
these types then searching by value is not the search you’re looking
for.

Examples of searching by value would be: Maxillaria, Acanth,
2008.1234, 2003.2.1

Search string are separated by spaces. For example if you enter the
search string Block 10 then Bauble will search for the strings Block
and 10 and return all the results that match either of these
strings. If you want to search for Block 10 as a while string then you
should quote the string like "Block 10".

Search by Expression

Searching with expression gives you a little more control over what
you are searching for. It can narrow the search down to a specific
domain. Expression consist of a domain, an operator and a value. For
example the search: gen=Maxillaria would return all the genera that
match the name Maxillaria. In this case the domain is gen, the
operator is = and the value is Maxillaria.

The search string gen like max% would return all the genera whose
names start with “Max”. In this case the domain again is gen, the
operator is like, which allows for “fuzzy” searching and the value is
max%. The percent sign is used as a wild card so if you search for
max% then it search for all value that start with max. If you search
for %max it searches for all values that end in max. The string %max%a
would search for all value that contain max and end in a.

For more information about the different search domain and their short-hand
aliases, see search-domains .

If expression are invalid they are usually used as search by value
searchs. For example the search string gen= will execute a search by
value for the string gen and the search string gen like will search
for the string gen and the string like.

Search by Query

Queries allow the most control over searching. With queries you can
search across relations, specific columns and join search using
boolean operators like AND and OR.

	An example of a query would be:

	plant where accession.species.genus.family=Fabaceae and location.site="Block 10"

This query would return all the plants whose family are Fabaceae and
are located in Block 10.

Searching with queries usually requires some knowledge of the Bauble
internals and database table layouts.

A couple of useful examples:

Which locations are in use:
location where plants.id!=0

Which genera are associated to at least one accession:
genus where species.accession.id!=0

Domains

The following are the common search domain and the columns they search
by default. The default columns are used when searching by value and
expression. The queries do not use the default columns.

	Domains:	family, fam: Search bauble.plugins.plants.Family

genus, gen: Search bauble.plugins.plants.Genus

species, sp: Search bauble.plugins.plants.Species

geography: Search bauble.plugins.plants.Geography

acc: Search bauble.plugins.garden.Accession

plant: Search bauble.plugins.garden.Plant

location, loc: Search bauble.plugins.garden.Location

 Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0 documentation

Editing and Inserting Data

The main way that we add or change information in Bauble is by using
the editors. Each basic type of data has its own editor. For example
there is a Family editor, a Genus editor, an Accession editor, etc.

To create a new record click on the Insert menu on
the menubar and then select the type of record your would like to
create. This will open a new blank editor for the type.

To edit an existing record in the database right click on an item in
the search results and select Edit from the popup
menu. This will open an editor that will allow you to change the
values on the record that you selected.

Most types also have children which you can add by right clicking on the
parent and selecting “Add ???...” on the context menu. For example, a
Family has Genus children: you can add a Genus to a Family by right clicking
on a Family and selecting “Add genus”.

Notes

Almost all of the editors in Bauble have a Notes tab which should work
the same regardless of which editor you are using.

If you enter a web address in a note then the link will show up in the
Links box when the item your are editing is selected in the search results.

You can browse the notes for an item in the database using the Notes
box at the bottom of the screen. The Notes box will be desensitized
if the selected item does not have any notes.

Family

The Family editor allows you to add or change a botanical family.

The Family field on the editor will change the name of the family.
The Family field is required.

The Qualifier field will change the family qualifier. The value can
either be sensu lato, sensu stricto or nothing.

Synonyms allow you to add other families that are synonyms with the
family you are currently editing. To add a new synonyms type in a
family name in the entry. You must select a family name from the list
of completions. Once you have selcted a family name that you want to
add as a synonym click on the Add button next to the synonym list and
it will add the selected synonym to the list. To remove a synonym
select the synonym from the list and click on the Remove button.

To cancel your changes without saving then click on the Cancel button.

To save the family you are working on then click OK.

To save the family you are working on and add a genus to it then click on
the Add Genera button.

To add another family when you are finished editing the current one
click on the Next button on the bottom. This will save the current
family and open a new blank family editor.

Genus

The Genus editor allows you to add or change a botanical genus.

The Family field on the genus editor allows you to choose the family
for the genus. When you begin type a family name it will show a list
of families to choose from. The family name must already exist in the
database before you can set it as the family for the genus.

The Genus field allows you to set the genus for this entry.

The Author field allows you to set the name or abbreviation of the
author(s) for the genus.

Synonyms allow you to add other genera that are synonyms with the
genus you are currently editing. To add a new synonyms type in a
genus name in the entry. You must select a genus name from the list
of completions. Once you have selcted a genus name that you want to
add as a synonym click on the Add button next to the synonym list and
it will add the selected synonym to the list. To remove a synonym
select the synonym from the list and click on the Remove button.

To cancel your changes without saving then click on the Cancel button.

To save the genus you are working on then click OK.

To save the genus you are working on and add a species to it then click on
the Add Species button.

To add another genus when you are finished editing the current one
click on the Next button on the bottom. This will save the current
genus and open a new blank genus editor.

Species/Taxon

For historical reasons called a species, but by this we mean a taxon at
rank species or lower. It represents a unique name in the database. The
species editor will allow you to construct the name as well as associate
metadata with the taxon such as its distribution, synonyms and other
information.

The Infraspecific parts in the species editor will allow you to specify
the taxon further than at species rank.

To cancel your changes without saving then click on the Cancel button.

To save the species you are working on then click OK.

To save the species you are working on and add an accession to it then click on
the Add Accession button.

To add another species when you are finished editing the current one
click on the Next button on the bottom. This will save the current
species and open a new blank species editor.

Accessions

The Accession editor allows us to add an accession to a species. In
Bauble an accession represents a group of plants or clones. The
accession would refer maybe a group of seed or cuttings from a
species. A plant would be an individual from that accesssion, i.e. a
specific plant in a specific location.

Accession Source

The source of the accessions lets you add more information about where
this accession came from. At the moment the type of the source can be
either a Collection or a Donation.

Collection

A Collection.

Donation

A Donation.

Plant

The Plant editor.

Creating multiple plants

You can create multiple Plants by using ranges in the code entry.
This is only allowed when creating new plants and it is not possible
when editing existing Plants in the database.

For example the range, 3-5 will create plant with code 3,4,5. The
range 1,4-7,25 will create plants with codes 1,4,5,6,7,25.

When you enter the range in the plant code entry the entry will turn
blue to indicate that you are now creating multiple plants. Any
fields that are set while in this mode will be copied to all the
plants that are created.

Locations

The Location editor

 Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0 documentation

Tagging

Tagging is an easy way to give context to an object or create a
collection of object that you want to recall later. For example if you
want to collect a bunch of plants that you later want to create a
report from you can tag them with the string “for that report i was
thinking about”. You can then select “for that report i was thinking
about” from the tags menu to show you all the objects you tagged.

Tagging can be done two ways. By selecting one or more items in the
search results and pressing Ctrl-T or by selecting
Tag‣Tag Selection from the menu. If you have
selected multiple items then only that tags that are common to all the
selected items will have a check next to it.

 Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0 documentation

Generating reports

Using the Mako Report Formatter

The Mako report formatter uses the Mako template language for
generating reports. More information about Mako and its language can
be found at makotemplates.org [http://www.makotemplates.org].

The Mako templating system should already be installed on your
computer if Bauble is installed.

Creating reports with Mako is similar in the way that you would create
a web page from a template. It is much simpler than the XSL
Formatter(see below) and should be relatively easy to create template
for anyone with a little but of programming experience.

The template generator will use the same file extension as the
template which should indicate the type of output the template with
create. For example, to generate an HTML page from your template you
should name the template something like report.html. If the template
will generate a comma seperated value file you should name the
template report.csv.

The template will receive a variable called values which will
contain the list of values in the current search.

The type of each value in values will be the same as the search
domain used in the search query. For more information on search
domains see Domains.

If the query does not have a search domain then the values could all
be of a different type and the Mako template should prepared to handle
them.

Using the XSL Report Formatter

The XSL report formatter requires an XSL to PDF renderer to
convert the data to a PDF file. Apache FOP is is a free and
open-source XSL->PDF renderer and is recommended.

If using Linux, Apache FOP should be installable using your package
manager. On Debian/Ubuntu it is installable as fop in Synaptic or
using the following command:

apt-get install fop

Installing Apache FOP on Windows

You have two options for installing FOP on Windows. The easiest way is
to download the prebuilt ApacheFOP-0.95-1-setup.exe [http://code.google.com/p/apache-fop-installer/downloads/detail?name=ApacheFOP-0.95-1-setup.exe&can=2&q=#makechanges] installer.

Alternatively you can download the archive [http://www.apache.org/dist/xmlgraphics/fop/binaries/]. After
extracting the archive you must add the directory you extracted the
archive to to your PATH environment variable.

 Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0 documentation

Importing and Exporting Data

Although Bauble can be extended through plugins to support alternate
import and export formats, by default it can only import and export
comma seperated values files or CSV.

There is some support for exporting to the Access for Biological
Collections Data it is limited.

There is also limited support for exporting to an XML format that more
or less reflects exactly the tables and row of the database.

Exporting ABCD and XML will not be covered here.

Warning

Importing files will most likely destroy any data you
have in the database so make sure you have backed up your data.

Importing from CSV

In general it is best to only import CSV files into Bauble that were
previously exported from Bauble. It is possible to import any CSV file
but that is more advanced that this doc will cover.

To import CSV files into Bauble select
Tools‣Export‣Comma Seperated Values from the
menu.

After clicking OK on the dialog that ask if you are sure you know what
you’re doing a file chooser will open. In the file chooser select the
files you want to import.

Exporting to CSV

To export the Bauble data to CSV select
Tools‣Export‣Comma Seperated Values from the menu.

This tool will ask you to select a directory to export the CSV data.
All of the tables in Bauble will be exported to files in the format
tablename.txt where tablename is the name of the table where the data
was exported from.

 Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0 documentation

Managing Users

Note

The Bauble users plugin is only available on PostgreSQL
based databases.

The Bauble User’s Plugin will allow you to create and manage the
permissions of users for your Bauble database.

Creating Users

To create a new user...

Permissions

Bauble allows read, write and execute permissions.

 Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0 documentation

Downloading the source

The Bauble source can be downloaded from our source
repository on github [http://github.com/Bauble/bauble.classic].

If you want a particular version of Bauble, we release and maintain versions
into branches. you should git checkout the branch corresponding to the
version of your choice. Branch names for Bauble versions are of the form
bauble-x.y, where x.y can be 1.0, for example. Our workflow is to commit
to the master development branch or to a patch branch and to include the
commits into a release branch when ready.

To check out the most recent code from the source repository you will need
to install the Git [http://www.git.org] version control system. Git is
incuded in all reasonable Linux distributions and can be installed on all
current operating systems.

Once you have installed Git you can checkout the latest Bauble code with
the following command:

git clone https://github.com/Bauble/bauble.classic.git

For more information about other available code branches go to
bauble.classic on github [http://www.github.com/Bauble/bauble.classic].

 Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0 documentation

Building the source

Building a python program is a bit of a contraddiction. You don’t normally
build nor compile a python program, you run it in its environment, and
python will process the modules loaded and produce faster-loading compiled
python files. You can, however, produce a Windows executable from a python
script, executable containing the whole python environment and dependencies.

Building (on Windows)

	In order to build a Bauble executable you will first need to download the
source code. For more information about download the Bauble source go to
Downloading the source.

	Follow all steps needed to set up a working Bauble environment from
Installation, but skip the final install step.

	instead of installing Bauble, you produce a Windows executable. This
is achieved with the py2exe target, which is only available on
Windows systems:

python setup.py py2exe

	At this point you can run Bauble. To run the compiled executable run:

.\dist\bauble.exe

or copy the executable to wherever you think appropriate.

	To optionally build an NSIS installer package you must install NSIS
from nsis.sourceforge.net [http://nsis.sourceforge.net/Download]. After installing NSIS
right click on .\scripts\build.nsi in Explorer and select
Compile NSIS Script.

 Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Bauble 1.0 documentation

Extending Bauble with Plugins

Nearly everything about Bauble is extensible through plugins. Plugins
can create tables, define custom searchs, add menu items, create
custom commands and more.

To create a new plugin you must extend the bauble.pluginmgr.Plugin
class.

 Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Bauble 1.0 documentation

API Documentation

bauble

The top level module for Bauble.

	
bauble.version = '1.0.32'

	str(object=’‘) -> string

Return a nice string representation of the object.
If the argument is a string, the return value is the same object.

	
bauble.gui = None

	bauble.gui is the instance bauble.ui.GUI

	
bauble.command_handler(cmd, arg)

	Call a command handler.

	Parameters:	
	cmd (str) – The name of the command to call

	arg (list) – The arg to pass to the command handler

	
bauble.main(uri=None)

	Run the main Bauble application.

	Parameters:	uri – the URI of the database to connect to. For more information

about database URIs see http://www.sqlalchemy.org/docs/05/dbengine.html#create-engine-url-arguments

	
bauble.main_is_frozen()

	Return True if we are running in a py2exe environment, else
return False

	
bauble.quit()

	Stop all tasks and quit Bauble.

	
bauble.save_state()

	Save the gui state and preferences.

bauble.db

	
bauble.db.Base

	All tables/mappers in Bauble which use the SQLAlchemy declarative
plugin for declaring tables and mappers should derive from this
class.

An instance of sqlalchemy.ext.declarative.Base

	
bauble.db.metadata

	The default metadata for all Bauble tables.

An instance of sqlalchemy.schema.MetaData

bauble.connmgr

bauble.editor

bauble.i18n

The i18n module defines the _() function for creating translatable strings.

_() is added to the Python builtins so there is no reason to import
this module more than once in an application. It is usually imported
in bauble

bauble.ui

bauble.meta

bauble.paths

Access to standard paths used by Bauble.

	
bauble.paths.main_dir()

	Returns the path of the bauble executable.

	
bauble.paths.lib_dir()

	Returns the path of the bauble module.

	
bauble.paths.locale_dir()

	Returns the root path of the locale files

	
bauble.paths.user_dir()

	Returns the path to where Bauble settings should be saved.

bauble.pluginmgr

bauble.prefs

bauble.task

The bauble.task module allows you to queue up long running tasks. The
running tasks still block but allows the GUI to update.

	
bauble.task.queue(task)

	Run a task.

task should be a generator with side effects. it does not matter what it
yields, it is important that it does stop from time to time yielding
whatever it wants to, and causing the side effect it has to cause.

	
bauble.task.set_message(msg)

	A convenience function for setting a message on the
statusbar. Returns the message id

	
bauble.task.clear_messages()

	Clear all the messages from the statusbar that were set with
bauble.task.set_message()

bauble.types

bauble.utils

A common set of utility functions used throughout Bauble.

	
bauble.utils.find_dependent_tables(table, metadata=None)

	Return an iterator with all tables that depend on table. The
tables are returned in the order that they depend on each
other. For example you know that table[0] does not depend on
tables[1].

	Parameters:	
	table – The tables who dependencies we want to find

	metadata – The sqlalchemy.engine.MetaData object
that holds the tables to search through. If None then use
bauble.db.metadata

	
bauble.utils.tree_model_has(tree, value)

	Return True or False if value is in the tree.

	
bauble.utils.search_tree_model(parent, data, cmp=<function <lambda>>)

	Return a iterable of gtk.TreeIter instances to all occurences
of data in model

	Parameters:	
	parent – a gtk.TreeModel or a gtk.TreeModelRow instance

	data – the data to look for

	cmp – the function to call on each row to check if it matches
data, default is C{lambda row, data: row[0] == data}

	
bauble.utils.clear_model(obj_with_model)

	

	Parameters:	obj_with_model – a gtk Widget that has a gtk.TreeModel that
can be retrieved with obj_with_mode.get_model

Remove the model from the object, deletes all the items in the
model, clear the model and then delete the model and set the model
on the object to None

	
bauble.utils.combo_set_active_text(combo, value)

	does the same thing as set_combo_from_value but this looks more like a
GTK+ method

	
bauble.utils.set_combo_from_value(combo, value, cmp=<function <lambda>>)

	Find value in combo model and set it as active, else raise ValueError
cmp(row, value) is the a function to use for comparison

Note

if more than one value is found in the combo then the
first one in the list is set

	
bauble.utils.combo_get_value_iter(combo, value, cmp=<function <lambda>>)

	Returns a gtk.TreeIter that points to first matching value in the
combo’s model.

	Parameters:	
	combo – the combo where we should search

	value – the value to search for

	cmp – the method to use to compare rows in the combo model and value,
the default is C{lambda row, value: row[0] == value}

Note

if more than one value is found in the combo then the first one
in the list is returned

	
bauble.utils.set_widget_value(widget, value, markup=False, default=None, index=0)

	

	Parameters:	
	widget – an instance of gtk.Widget

	value – the value to put in the widget

	markup – whether or not value is markup

	default – the default value to put in the widget if the value is None

	index – the row index to use for those widgets who use a model

Note

any values passed in for widgets that expect a string will call
the values __str__ method

	
bauble.utils.create_message_dialog(msg, type=<enum GTK_MESSAGE_INFO of type GtkMessageType>, buttons=<enum GTK_BUTTONS_OK of type GtkButtonsType>, parent=None)

	Create a message dialog.

	Parameters:	
	msg – The markup to use for the message. The value should be
escaped in case it contains any HTML entities.

	type – A GTK message type constant. The default is gtk.MESSAGE_INFO.

	buttons – A GTK buttons type constant. The default is
gtk.BUTTONS_OK.

	parent – The parent window for the dialog

Returns a gtk.MessageDialog

	
bauble.utils.message_dialog(msg, type=<enum GTK_MESSAGE_INFO of type GtkMessageType>, buttons=<enum GTK_BUTTONS_OK of type GtkButtonsType>, parent=None)

	Create a message dialog with bauble.utils.create_message_dialog()
and run and destroy it.

Returns the dialog’s response.

	
bauble.utils.create_yes_no_dialog(msg, parent=None)

	Create a dialog with yes/no buttons.

	
bauble.utils.yes_no_dialog(msg, parent=None, yes_delay=-1)

	Create and run a yes/no dialog.

Return True if the dialog response equals gtk.RESPONSE_YES

	Parameters:	
	msg – the message to display in the dialog

	parent – the dialog’s parent

	yes_delay – the number of seconds before the yes button should
become sensitive

	
bauble.utils.create_message_details_dialog(msg, details, type=<enum GTK_MESSAGE_INFO of type GtkMessageType>, buttons=<enum GTK_BUTTONS_OK of type GtkButtonsType>, parent=None)

	Create a message dialog with a details expander.

	
bauble.utils.message_details_dialog(msg, details, type=<enum GTK_MESSAGE_INFO of type GtkMessageType>, buttons=<enum GTK_BUTTONS_OK of type GtkButtonsType>, parent=None)

	Create and run a message dialog with a details expander.

	
bauble.utils.setup_text_combobox(combo, values=None, cell_data_func=None)

	Configure a gtk.ComboBox as a text combobox

NOTE: If you pass a cell_data_func that is a method of an object that
holds a reference to combo then the object will not be properly
garbage collected. To avoid this problem either don’t pass a
method of object or make the method static

	Parameters:	
	combo – gtk.ComboBox

	values – list vales or gtk.ListStore

	cell_date_func –

	
bauble.utils.setup_date_button(view, entry, button, date_func=None)

	Associate a button with entry so that when the button is clicked a
date is inserted into the entry.

	Parameters:	
	view – a bauble.editor.GenericEditorView

	entry – the entry that the data goes into

	button – the button that enters the data in entry

	date_func – the function that returns a string represention
of the date

	
bauble.utils.to_unicode(obj, encoding='utf-8')

	Return obj converted to unicode. If obj is already a unicode
object it will not try to decode it to converted it to <encoding>
but will just return the original obj

	
bauble.utils.utf8(obj)

	This function is an alias for to_unicode(obj, ‘utf-8’)

	
bauble.utils.xml_safe(obj, encoding='utf-8')

	Return a string with character entities escaped safe for xml, if the
str parameter is a string a string is returned, if str is a unicode object
then a unicode object is returned

	
bauble.utils.xml_safe_utf8(obj)

	This method is deprecated and just returns xml_safe(obj)

	
bauble.utils.natsort_key(obj)

	a key getter for sort and sorted function

the sorting is done on return value of obj.__str__() so we can sort
objects as well, i don’t know if this will cause problems with unicode

use like: sorted(some_list, key=utils.natsort_key)

	
bauble.utils.delete_or_expunge(obj)

	If the object is in object_session(obj).new then expunge it from the
session. If not then session.delete it.

	
bauble.utils.reset_sequence(column)

	If column.sequence is not None or the column is an Integer and
column.autoincrement is true then reset the sequence for the next
available value for the column...if the column doesn’t have a
sequence then do nothing and return

The SQL statements are executed directly from db.engine

This function only works for PostgreSQL database. It does nothing
for other database engines.

	
bauble.utils.make_label_clickable(label, on_clicked, *args)

	

	Parameters:	
	label – a gtk.Label that has a gtk.EventBox as its parent

	on_clicked – callback to be called when the label is clicked
on_clicked(label, event, data)

	
bauble.utils.enum_values_str(col)

	

	Parameters:	col – a string if table.col where col is an enum type

return a string with of the values on an enum type join by a comma

	
bauble.utils.which(filename, path=None)

	Return first occurence of file on the path.

	
bauble.utils.ilike(col, val, engine=None)

	Return a cross platform ilike function.

	
bauble.utils.range_builder(text)

	Return a list of numbers from a string range of the form 1-3,4,5

	
bauble.utils.topological_sort(items, partial_order)

	Perform topological sort.

	Parameters:	
	items – a list of items to be sorted.

	partial_order – a list of pairs. If pair (a,b) is in it, it
means that item a should appear before item b. Returns a list of
the items in one of the possible orders, or None if partial_order
contains a loop.

	
bauble.utils.get_distinct_values(column, session)

	Return a list of all the distinct values in a table column

	
bauble.utils.get_invalid_columns(obj, ignore_columns=['id'])

	Return column names on a mapped object that have values
which aren’t valid for the model.

Invalid columns meet the following criteria:
- nullable columns with null values
- ...what else?

	
bauble.utils.get_urls(text)

	Return tuples of http/https links and labels for the links. To
label a link prefix it with [label text],
e.g. [BBG]http://belizebotanic.org

	
class bauble.utils.GenericMessageBox

	Bases: gtk.EventBox

Abstract class for showing a message box at the top of an editor.

	
class bauble.utils.MessageBox(msg=None, details=None)

	Bases: bauble.utils.GenericMessageBox

A MessageBox that can display a message label at the top of an editor.

	
class bauble.utils.YesNoMessageBox(msg=None, on_response=None)

	Bases: bauble.utils.GenericMessageBox

A message box that can present a Yes or No question to the user

	
bauble.utils.add_message_box(parent, type=1)

	

	Parameters:	
	parent – the parent gtk.Box width to add the
message box to

	type – one of MESSAGE_BOX_INFO, MESSAGE_BOX_ERROR or
MESSAGE_BOX_YESNO

bauble.view

	
class bauble.view.SearchView.ViewMeta

	

bauble.search

bauble.plugins.plants

bauble.plugins.garden

bauble.plugins.abcd

bauble.plugins.imex

bauble.plugins.report

bauble.plugins.report.xsl

bauble.plugins.report.mako

bauble.plugins.tag

 Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Bauble 1.0 documentation

 Python Module Index

 b

 			

 		
 b	

 	[image: -]
 	
 bauble	

 	
 	
 bauble.i18n	

 	
 	
 bauble.paths	

 	
 	
 bauble.task	

 	
 	
 bauble.utils	

 Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Bauble 1.0 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

A

 	

 	add_message_box() (in module bauble.utils), [1], [2], [3]

B

 	

 	bauble (module), [1], [2], [3]

 	bauble.db.Base (in module bauble), [1], [2], [3]

 	bauble.db.metadata (in module bauble), [1], [2], [3]

 	bauble.i18n (module), [1], [2], [3]

 	

 	bauble.paths (module), [1], [2], [3]

 	bauble.task (module), [1], [2], [3]

 	bauble.utils (module), [1], [2], [3]

 	bauble.view.SearchView.ViewMeta (class in bauble.utils), [1], [2], [3]

C

 	

 	clear_messages() (in module bauble.task), [1], [2], [3]

 	clear_model() (in module bauble.utils), [1], [2], [3]

 	combo_get_value_iter() (in module bauble.utils), [1], [2], [3]

 	combo_set_active_text() (in module bauble.utils), [1], [2], [3]

 	

 	command_handler() (in module bauble), [1], [2], [3]

 	create_message_details_dialog() (in module bauble.utils), [1], [2], [3]

 	create_message_dialog() (in module bauble.utils), [1], [2], [3]

 	create_yes_no_dialog() (in module bauble.utils), [1], [2], [3]

D

 	

 	delete_or_expunge() (in module bauble.utils), [1], [2], [3]

E

 	

 	enum_values_str() (in module bauble.utils), [1], [2], [3]

F

 	

 	find_dependent_tables() (in module bauble.utils), [1], [2], [3]

G

 	

 	GenericMessageBox (class in bauble.utils), [1], [2], [3]

 	get_distinct_values() (in module bauble.utils), [1], [2], [3]

 	get_invalid_columns() (in module bauble.utils), [1], [2], [3]

 	

 	get_urls() (in module bauble.utils), [1], [2], [3]

 	gui (in module bauble), [1], [2], [3]

I

 	

 	ilike() (in module bauble.utils), [1], [2], [3]

L

 	

 	lib_dir() (in module bauble.paths), [1], [2], [3]

 	

 	locale_dir() (in module bauble.paths), [1], [2], [3]

M

 	

 	main() (in module bauble), [1], [2], [3]

 	main_dir() (in module bauble.paths), [1], [2], [3]

 	main_is_frozen() (in module bauble), [1], [2], [3]

 	make_label_clickable() (in module bauble.utils), [1], [2], [3]

 	

 	message_details_dialog() (in module bauble.utils), [1], [2], [3]

 	message_dialog() (in module bauble.utils), [1], [2], [3]

 	MessageBox (class in bauble.utils), [1], [2], [3]

N

 	

 	natsort_key() (in module bauble.utils), [1], [2], [3]

Q

 	

 	queue() (in module bauble.task), [1], [2], [3]

 	

 	quit() (in module bauble), [1], [2], [3]

R

 	

 	range_builder() (in module bauble.utils), [1], [2], [3]

 	

 	reset_sequence() (in module bauble.utils), [1], [2], [3]

S

 	

 	save_state() (in module bauble), [1], [2], [3]

 	search_tree_model() (in module bauble.utils), [1], [2], [3]

 	set_combo_from_value() (in module bauble.utils), [1], [2], [3]

 	set_message() (in module bauble.task), [1], [2], [3]

 	

 	set_widget_value() (in module bauble.utils), [1], [2], [3]

 	setup_date_button() (in module bauble.utils), [1], [2], [3]

 	setup_text_combobox() (in module bauble.utils), [1], [2], [3]

T

 	

 	to_unicode() (in module bauble.utils), [1], [2], [3]

 	topological_sort() (in module bauble.utils), [1], [2], [3]

 	

 	tree_model_has() (in module bauble.utils), [1], [2], [3]

U

 	

 	user_dir() (in module bauble.paths), [1], [2], [3]

 	

 	utf8() (in module bauble.utils), [1], [2], [3]

V

 	

 	version (in module bauble), [1], [2], [3]

W

 	

 	which() (in module bauble.utils), [1], [2], [3]

X

 	

 	xml_safe() (in module bauble.utils), [1], [2], [3]

 	

 	xml_safe_utf8() (in module bauble.utils), [1], [2], [3]

Y

 	

 	yes_no_dialog() (in module bauble.utils), [1], [2], [3]

 	

 	YesNoMessageBox (class in bauble.utils), [1], [2], [3]

 Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

 fr/building.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Building the source

Building a python program is a bit of a contraddiction. You don’t normally
build nor compile a python program, you run it in its environment, and
python will process the modules loaded and produce faster-loading compiled
python files. You can, however, produce a Windows executable from a python
script, executable containing the whole python environment and dependencies.

Building (on Windows)

		In order to build a Bauble executable you will first need to download the
source code. For more information about download the Bauble source go to
Downloading the source.

		Follow all steps needed to set up a working Bauble environment from
Installation, but skip the final install step.

		instead of installing Bauble, you produce a Windows executable. This
is achieved with the py2exe target, which is only available on
Windows systems:

python setup.py py2exe

		At this point you can run Bauble. To run the compiled executable run:

.\dist\bauble.exe

or copy the executable to wherever you think appropriate.

		To optionally build an NSIS installer package you must install NSIS
from nsis.sourceforge.net [http://nsis.sourceforge.net/Download]. After installing NSIS
right click on .\scripts\build.nsi in Explorer and select
Compile NSIS Script.

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

fr/api.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

API Documentation

bauble

The top level module for Bauble.

		
bauble.version = '1.0.32'

		str(object=’‘) -> string

Return a nice string representation of the object.
If the argument is a string, the return value is the same object.

		
bauble.gui = None

		bauble.gui is the instance bauble.ui.GUI

		
bauble.command_handler(cmd, arg)

		Call a command handler.

		Parameters:		
		cmd (str) – The name of the command to call

		arg (list) – The arg to pass to the command handler

		
bauble.main(uri=None)

		Run the main Bauble application.

		Parameters:		uri – the URI of the database to connect to. For more information

about database URIs see http://www.sqlalchemy.org/docs/05/dbengine.html#create-engine-url-arguments

		
bauble.main_is_frozen()

		Return True if we are running in a py2exe environment, else
return False

		
bauble.quit()

		Stop all tasks and quit Bauble.

		
bauble.save_state()

		Save the gui state and preferences.

bauble.db

		
bauble.db.Base

		All tables/mappers in Bauble which use the SQLAlchemy declarative
plugin for declaring tables and mappers should derive from this
class.

An instance of sqlalchemy.ext.declarative.Base

		
bauble.db.metadata

		The default metadata for all Bauble tables.

An instance of sqlalchemy.schema.MetaData

bauble.connmgr

bauble.editor

bauble.i18n

The i18n module defines the _() function for creating translatable strings.

_() is added to the Python builtins so there is no reason to import
this module more than once in an application. It is usually imported
in bauble

bauble.ui

bauble.meta

bauble.paths

Access to standard paths used by Bauble.

		
bauble.paths.main_dir()

		Returns the path of the bauble executable.

		
bauble.paths.lib_dir()

		Returns the path of the bauble module.

		
bauble.paths.locale_dir()

		Returns the root path of the locale files

		
bauble.paths.user_dir()

		Returns the path to where Bauble settings should be saved.

bauble.pluginmgr

bauble.prefs

bauble.task

The bauble.task module allows you to queue up long running tasks. The
running tasks still block but allows the GUI to update.

		
bauble.task.queue(task)

		Run a task.

task should be a generator with side effects. it does not matter what it
yields, it is important that it does stop from time to time yielding
whatever it wants to, and causing the side effect it has to cause.

		
bauble.task.set_message(msg)

		A convenience function for setting a message on the
statusbar. Returns the message id

		
bauble.task.clear_messages()

		Clear all the messages from the statusbar that were set with
bauble.task.set_message()

bauble.types

bauble.utils

A common set of utility functions used throughout Bauble.

		
bauble.utils.find_dependent_tables(table, metadata=None)

		Return an iterator with all tables that depend on table. The
tables are returned in the order that they depend on each
other. For example you know that table[0] does not depend on
tables[1].

		Parameters:		
		table – The tables who dependencies we want to find

		metadata – The sqlalchemy.engine.MetaData object
that holds the tables to search through. If None then use
bauble.db.metadata

		
bauble.utils.tree_model_has(tree, value)

		Return True or False if value is in the tree.

		
bauble.utils.search_tree_model(parent, data, cmp=<function <lambda>>)

		Return a iterable of gtk.TreeIter instances to all occurences
of data in model

		Parameters:		
		parent – a gtk.TreeModel or a gtk.TreeModelRow instance

		data – the data to look for

		cmp – the function to call on each row to check if it matches
data, default is C{lambda row, data: row[0] == data}

		
bauble.utils.clear_model(obj_with_model)

		

		Parameters:		obj_with_model – a gtk Widget that has a gtk.TreeModel that
can be retrieved with obj_with_mode.get_model

Remove the model from the object, deletes all the items in the
model, clear the model and then delete the model and set the model
on the object to None

		
bauble.utils.combo_set_active_text(combo, value)

		does the same thing as set_combo_from_value but this looks more like a
GTK+ method

		
bauble.utils.set_combo_from_value(combo, value, cmp=<function <lambda>>)

		Find value in combo model and set it as active, else raise ValueError
cmp(row, value) is the a function to use for comparison

Note

if more than one value is found in the combo then the
first one in the list is set

		
bauble.utils.combo_get_value_iter(combo, value, cmp=<function <lambda>>)

		Returns a gtk.TreeIter that points to first matching value in the
combo’s model.

		Parameters:		
		combo – the combo where we should search

		value – the value to search for

		cmp – the method to use to compare rows in the combo model and value,
the default is C{lambda row, value: row[0] == value}

Note

if more than one value is found in the combo then the first one
in the list is returned

		
bauble.utils.set_widget_value(widget, value, markup=False, default=None, index=0)

		

		Parameters:		
		widget – an instance of gtk.Widget

		value – the value to put in the widget

		markup – whether or not value is markup

		default – the default value to put in the widget if the value is None

		index – the row index to use for those widgets who use a model

Note

any values passed in for widgets that expect a string will call
the values __str__ method

		
bauble.utils.create_message_dialog(msg, type=<enum GTK_MESSAGE_INFO of type GtkMessageType>, buttons=<enum GTK_BUTTONS_OK of type GtkButtonsType>, parent=None)

		Create a message dialog.

		Parameters:		
		msg – The markup to use for the message. The value should be
escaped in case it contains any HTML entities.

		type – A GTK message type constant. The default is gtk.MESSAGE_INFO.

		buttons – A GTK buttons type constant. The default is
gtk.BUTTONS_OK.

		parent – The parent window for the dialog

Returns a gtk.MessageDialog

		
bauble.utils.message_dialog(msg, type=<enum GTK_MESSAGE_INFO of type GtkMessageType>, buttons=<enum GTK_BUTTONS_OK of type GtkButtonsType>, parent=None)

		Create a message dialog with bauble.utils.create_message_dialog()
and run and destroy it.

Returns the dialog’s response.

		
bauble.utils.create_yes_no_dialog(msg, parent=None)

		Create a dialog with yes/no buttons.

		
bauble.utils.yes_no_dialog(msg, parent=None, yes_delay=-1)

		Create and run a yes/no dialog.

Return True if the dialog response equals gtk.RESPONSE_YES

		Parameters:		
		msg – the message to display in the dialog

		parent – the dialog’s parent

		yes_delay – the number of seconds before the yes button should
become sensitive

		
bauble.utils.create_message_details_dialog(msg, details, type=<enum GTK_MESSAGE_INFO of type GtkMessageType>, buttons=<enum GTK_BUTTONS_OK of type GtkButtonsType>, parent=None)

		Create a message dialog with a details expander.

		
bauble.utils.message_details_dialog(msg, details, type=<enum GTK_MESSAGE_INFO of type GtkMessageType>, buttons=<enum GTK_BUTTONS_OK of type GtkButtonsType>, parent=None)

		Create and run a message dialog with a details expander.

		
bauble.utils.setup_text_combobox(combo, values=None, cell_data_func=None)

		Configure a gtk.ComboBox as a text combobox

NOTE: If you pass a cell_data_func that is a method of an object that
holds a reference to combo then the object will not be properly
garbage collected. To avoid this problem either don’t pass a
method of object or make the method static

		Parameters:		
		combo – gtk.ComboBox

		values – list vales or gtk.ListStore

		cell_date_func –

		
bauble.utils.setup_date_button(view, entry, button, date_func=None)

		Associate a button with entry so that when the button is clicked a
date is inserted into the entry.

		Parameters:		
		view – a bauble.editor.GenericEditorView

		entry – the entry that the data goes into

		button – the button that enters the data in entry

		date_func – the function that returns a string represention
of the date

		
bauble.utils.to_unicode(obj, encoding='utf-8')

		Return obj converted to unicode. If obj is already a unicode
object it will not try to decode it to converted it to <encoding>
but will just return the original obj

		
bauble.utils.utf8(obj)

		This function is an alias for to_unicode(obj, ‘utf-8’)

		
bauble.utils.xml_safe(obj, encoding='utf-8')

		Return a string with character entities escaped safe for xml, if the
str parameter is a string a string is returned, if str is a unicode object
then a unicode object is returned

		
bauble.utils.xml_safe_utf8(obj)

		This method is deprecated and just returns xml_safe(obj)

		
bauble.utils.natsort_key(obj)

		a key getter for sort and sorted function

the sorting is done on return value of obj.__str__() so we can sort
objects as well, i don’t know if this will cause problems with unicode

use like: sorted(some_list, key=utils.natsort_key)

		
bauble.utils.delete_or_expunge(obj)

		If the object is in object_session(obj).new then expunge it from the
session. If not then session.delete it.

		
bauble.utils.reset_sequence(column)

		If column.sequence is not None or the column is an Integer and
column.autoincrement is true then reset the sequence for the next
available value for the column...if the column doesn’t have a
sequence then do nothing and return

The SQL statements are executed directly from db.engine

This function only works for PostgreSQL database. It does nothing
for other database engines.

		
bauble.utils.make_label_clickable(label, on_clicked, *args)

		

		Parameters:		
		label – a gtk.Label that has a gtk.EventBox as its parent

		on_clicked – callback to be called when the label is clicked
on_clicked(label, event, data)

		
bauble.utils.enum_values_str(col)

		

		Parameters:		col – a string if table.col where col is an enum type

return a string with of the values on an enum type join by a comma

		
bauble.utils.which(filename, path=None)

		Return first occurence of file on the path.

		
bauble.utils.ilike(col, val, engine=None)

		Return a cross platform ilike function.

		
bauble.utils.range_builder(text)

		Return a list of numbers from a string range of the form 1-3,4,5

		
bauble.utils.topological_sort(items, partial_order)

		Perform topological sort.

		Parameters:		
		items – a list of items to be sorted.

		partial_order – a list of pairs. If pair (a,b) is in it, it
means that item a should appear before item b. Returns a list of
the items in one of the possible orders, or None if partial_order
contains a loop.

		
bauble.utils.get_distinct_values(column, session)

		Return a list of all the distinct values in a table column

		
bauble.utils.get_invalid_columns(obj, ignore_columns=['id'])

		Return column names on a mapped object that have values
which aren’t valid for the model.

Invalid columns meet the following criteria:
- nullable columns with null values
- ...what else?

		
bauble.utils.get_urls(text)

		Return tuples of http/https links and labels for the links. To
label a link prefix it with [label text],
e.g. [BBG]http://belizebotanic.org

		
class bauble.utils.GenericMessageBox

		Bases: gtk.EventBox

Abstract class for showing a message box at the top of an editor.

		
class bauble.utils.MessageBox(msg=None, details=None)

		Bases: bauble.utils.GenericMessageBox

A MessageBox that can display a message label at the top of an editor.

		
class bauble.utils.YesNoMessageBox(msg=None, on_response=None)

		Bases: bauble.utils.GenericMessageBox

A message box that can present a Yes or No question to the user

		
bauble.utils.add_message_box(parent, type=1)

		

		Parameters:		
		parent – the parent gtk.Box width to add the
message box to

		type – one of MESSAGE_BOX_INFO, MESSAGE_BOX_ERROR or
MESSAGE_BOX_YESNO

bauble.view

		
class bauble.view.SearchView.ViewMeta

		

bauble.search

bauble.plugins.plants

bauble.plugins.garden

bauble.plugins.abcd

bauble.plugins.imex

bauble.plugins.report

bauble.plugins.report.xsl

bauble.plugins.report.mako

bauble.plugins.tag

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

fr/index.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Documentation for Bauble 1.0

[image: https://travis-ci.org/mfrasca/bauble.classic.svg?branch=master]
Bauble is an application for managing botanical specimen collections.
With it you can create a searchable database of plant records.

Bauble is also extensible through plugins and can be customized to suit
the needs of the institution.

It is open [http://www.opensource.org] and free [http://www.fsf.org] and is released under the GNU Public License [http://www.fsf.org/licensing/licenses/gpl.html]

Installing Bauble

		Installation
		Installing on Linux

		Installing on MacOSX

		Installing on Windows

		Troubleshooting the Install

Using Bauble

		Getting Started
		Connecting to a database

		Creating a new database

		Searching in Bauble
		The Query Builder

		The Query Language

		Editing and Inserting Data
		Notes

		Family

		Genus

		Species/Taxon

		Accessions

		Plant

		Locations

		Tagging

		Generating reports
		Using the Mako Report Formatter

		Using the XSL Report Formatter

		Importing and Exporting Data
		Importing from CSV

		Exporting to CSV

		Managing Users
		Creating Users

		Permissions

Bauble Development

		Downloading the source

		Building the source
		Building (on Windows)

		Extending Bauble with Plugins

		API Documentation
		bauble

		bauble.db

		bauble.connmgr

		bauble.editor

		bauble.i18n

		bauble.ui

		bauble.meta

		bauble.paths

		bauble.pluginmgr

		bauble.prefs

		bauble.task

		bauble.types

		bauble.utils

		bauble.view

		bauble.search

		bauble.plugins.plants

		bauble.plugins.garden

		bauble.plugins.abcd

		bauble.plugins.imex

		bauble.plugins.report

		bauble.plugins.report.xsl

		bauble.plugins.report.mako

		bauble.plugins.tag

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

fr/extending.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Extending Bauble with Plugins

Nearly everything about Bauble is extensible through plugins. Plugins
can create tables, define custom searchs, add menu items, create
custom commands and more.

To create a new plugin you must extend the bauble.pluginmgr.Plugin
class.

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

fr/tagging.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Tagging

Tagging is an easy way to give context to an object or create a
collection of object that you want to recall later. For example if you
want to collect a bunch of plants that you later want to create a
report from you can tag them with the string “for that report i was
thinking about”. You can then select “for that report i was thinking
about” from the tags menu to show you all the objects you tagged.

Tagging can be done two ways. By selecting one or more items in the
search results and pressing Ctrl-T or by selecting
Tag‣Tag Selection from the menu. If you have
selected multiple items then only that tags that are common to all the
selected items will have a check next to it.

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

fr/users.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Managing Users

Note

The Bauble users plugin is only available on PostgreSQL
based databases.

The Bauble User’s Plugin will allow you to create and manage the
permissions of users for your Bauble database.

Creating Users

To create a new user...

Permissions

Bauble allows read, write and execute permissions.

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

fr/report.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Generating reports

Using the Mako Report Formatter

The Mako report formatter uses the Mako template language for
generating reports. More information about Mako and its language can
be found at makotemplates.org [http://www.makotemplates.org].

The Mako templating system should already be installed on your
computer if Bauble is installed.

Creating reports with Mako is similar in the way that you would create
a web page from a template. It is much simpler than the XSL
Formatter(see below) and should be relatively easy to create template
for anyone with a little but of programming experience.

The template generator will use the same file extension as the
template which should indicate the type of output the template with
create. For example, to generate an HTML page from your template you
should name the template something like report.html. If the template
will generate a comma seperated value file you should name the
template report.csv.

The template will receive a variable called values which will
contain the list of values in the current search.

The type of each value in values will be the same as the search
domain used in the search query. For more information on search
domains see Domains.

If the query does not have a search domain then the values could all
be of a different type and the Mako template should prepared to handle
them.

Using the XSL Report Formatter

The XSL report formatter requires an XSL to PDF renderer to
convert the data to a PDF file. Apache FOP is is a free and
open-source XSL->PDF renderer and is recommended.

If using Linux, Apache FOP should be installable using your package
manager. On Debian/Ubuntu it is installable as fop in Synaptic or
using the following command:

apt-get install fop

Installing Apache FOP on Windows

You have two options for installing FOP on Windows. The easiest way is
to download the prebuilt ApacheFOP-0.95-1-setup.exe [http://code.google.com/p/apache-fop-installer/downloads/detail?name=ApacheFOP-0.95-1-setup.exe&can=2&q=#makechanges] installer.

Alternatively you can download the archive [http://www.apache.org/dist/xmlgraphics/fop/binaries/]. After
extracting the archive you must add the directory you extracted the
archive to to your PATH environment variable.

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

fr/editing.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Editing and Inserting Data

The main way that we add or change information in Bauble is by using
the editors. Each basic type of data has its own editor. For example
there is a Family editor, a Genus editor, an Accession editor, etc.

To create a new record click on the Insert menu on
the menubar and then select the type of record your would like to
create. This will open a new blank editor for the type.

To edit an existing record in the database right click on an item in
the search results and select Edit from the popup
menu. This will open an editor that will allow you to change the
values on the record that you selected.

Most types also have children which you can add by right clicking on the
parent and selecting “Add ???...” on the context menu. For example, a
Family has Genus children: you can add a Genus to a Family by right clicking
on a Family and selecting “Add genus”.

Notes

Almost all of the editors in Bauble have a Notes tab which should work
the same regardless of which editor you are using.

If you enter a web address in a note then the link will show up in the
Links box when the item your are editing is selected in the search results.

You can browse the notes for an item in the database using the Notes
box at the bottom of the screen. The Notes box will be desensitized
if the selected item does not have any notes.

Family

The Family editor allows you to add or change a botanical family.

The Family field on the editor will change the name of the family.
The Family field is required.

The Qualifier field will change the family qualifier. The value can
either be sensu lato, sensu stricto or nothing.

Synonyms allow you to add other families that are synonyms with the
family you are currently editing. To add a new synonyms type in a
family name in the entry. You must select a family name from the list
of completions. Once you have selcted a family name that you want to
add as a synonym click on the Add button next to the synonym list and
it will add the selected synonym to the list. To remove a synonym
select the synonym from the list and click on the Remove button.

To cancel your changes without saving then click on the Cancel button.

To save the family you are working on then click OK.

To save the family you are working on and add a genus to it then click on
the Add Genera button.

To add another family when you are finished editing the current one
click on the Next button on the bottom. This will save the current
family and open a new blank family editor.

Genus

The Genus editor allows you to add or change a botanical genus.

The Family field on the genus editor allows you to choose the family
for the genus. When you begin type a family name it will show a list
of families to choose from. The family name must already exist in the
database before you can set it as the family for the genus.

The Genus field allows you to set the genus for this entry.

The Author field allows you to set the name or abbreviation of the
author(s) for the genus.

Synonyms allow you to add other genera that are synonyms with the
genus you are currently editing. To add a new synonyms type in a
genus name in the entry. You must select a genus name from the list
of completions. Once you have selcted a genus name that you want to
add as a synonym click on the Add button next to the synonym list and
it will add the selected synonym to the list. To remove a synonym
select the synonym from the list and click on the Remove button.

To cancel your changes without saving then click on the Cancel button.

To save the genus you are working on then click OK.

To save the genus you are working on and add a species to it then click on
the Add Species button.

To add another genus when you are finished editing the current one
click on the Next button on the bottom. This will save the current
genus and open a new blank genus editor.

Species/Taxon

For historical reasons called a species, but by this we mean a taxon at
rank species or lower. It represents a unique name in the database. The
species editor will allow you to construct the name as well as associate
metadata with the taxon such as its distribution, synonyms and other
information.

The Infraspecific parts in the species editor will allow you to specify
the taxon further than at species rank.

To cancel your changes without saving then click on the Cancel button.

To save the species you are working on then click OK.

To save the species you are working on and add an accession to it then click on
the Add Accession button.

To add another species when you are finished editing the current one
click on the Next button on the bottom. This will save the current
species and open a new blank species editor.

Accessions

The Accession editor allows us to add an accession to a species. In
Bauble an accession represents a group of plants or clones. The
accession would refer maybe a group of seed or cuttings from a
species. A plant would be an individual from that accesssion, i.e. a
specific plant in a specific location.

Accession Source

The source of the accessions lets you add more information about where
this accession came from. At the moment the type of the source can be
either a Collection or a Donation.

Collection

A Collection.

Donation

A Donation.

Plant

The Plant editor.

Creating multiple plants

You can create multiple Plants by using ranges in the code entry.
This is only allowed when creating new plants and it is not possible
when editing existing Plants in the database.

For example the range, 3-5 will create plant with code 3,4,5. The
range 1,4-7,25 will create plants with codes 1,4,5,6,7,25.

When you enter the range in the plant code entry the entry will turn
blue to indicate that you are now creating multiple plants. Any
fields that are set while in this mode will be copied to all the
plants that are created.

Locations

The Location editor

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

es/installing.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Installation

bauble.classic is a cross-platform program and it will run on unix machines
like Linux and MacOSX, as well as on Windows.

To install Bauble first requires that you install its dependencies that
cannot be installed automatically. These include virtualenvwrapper, PyGTK
and pip. Python and GTK+, you probably already have. As long as you have
these packages installed then Bauble should be able to install the rest of
its dependencies by itself.

Note

If you follow these installation steps, you will end with Bauble
running within a Python virtual environment, all Python
dependencies installed locally, non conflicting with any other
Python program you may have on your system.

if you later choose to remove Bauble, you simply remove the
virtual environment, which is a directory, with all of its
content.

Installing on Linux

		Make sure your Python [http://www.python.org] version is 2.4
or greater, that you have the develompent environment for GTK+ [http://www.gtk.org] and that you have installed PyGTK [http://www.pygtk.org] using your package manager (ubuntu,
debian: python-gtk2).

		Download and extract the Bauble source package from

https://github.com/mfrasca/bauble.classic.git

		Make and activate a virtual environment with
--system-site-packages.

		If you would like to use the default SQLite [http://sqlite.org/] database or you don’t know what this means
then you can skip this step. If you would like to use a database
backend other than the default SQLite backend then you will also
need to install a database connector.

If you would like to use a PostgreSQL [http://www.postgresql.org]
database then install psycopg2 with the following commands:

pip install -U psycopg2

		In the installation directory execute the following command:

python setup.py install

If this doesn’t complete successfully see Troubleshooting the Install.

		Any time you want to run Bauble, open a terminal window, activate
the virtual environment and execute the bauble command.

Next...

Connecting to a database.

Installing on MacOSX

Being MacOSX a unix environment, most stuff should work just like in
Linux, but we’ve never tried. Feedback highly welcome.

Next...

Connecting to a database.

Installing on Windows

The Windows installer used to be a “batteries-included” installer,
installing everything needed to run Bauble. The current maintainer
of bauble.classic cannot run Windows applications. If you want to
run the latest version of bauble on Windows: download and install
the dependencies and then install Bauble from the source package.

Please report any trouble and help with packaging will be very
welcome.

Note

Bauble has been tested with and is known to work on
Windows XP and Windows-8. Although it should work fine on other
versions Windows it has not been thoroughly tested.

the installation steps on Windows:

		Install GTK+. The easiest way to install GTK+ is to download the
latest runtime packages from gtk-win.sourceforge.net [http://gtk-win.sourceforge.net/home/index.php/Downloads].

Note

The gtk-win package currently doesn’t support SVG which can
cause a problem with Bauble.

There is also a script in the Bauble source archive in
scripts/install_gtk.py which will download the GTK+ Win32
installer. This will also download and install the SVG pixbuf
loader for GTK+.

		download and install Python 2.x (32bit) from:

http://www.python.org

Bauble has been developed and tested using Python 2.x. It will
definitely not run on Python 3.x. If you are interested in helping
port to Python 3.x, please contact the Bauble maintainers.

		download and install pygtk (requires 32bit python) from:

http://ftp.gnome.org/pub/GNOME/binaries/win32/pygtk/

		download and install pip from:

http://bootstrap.pypa.io/get-pip.py

		download and install git (comes with a unix-like sh).

		install virtualenvwrapper-win (using pip)

		create the virtual environment now.

		download gettext from:

http://www.boost.org/doc/libs/1_56_0/libs/locale/doc/html/gettext_for_windows.html

You will need manually unpack the statically linked binaries,
Windows will probably complain about the risks of unpacking a zip
archive that contains executable files, ignore this. A safe place
to put the executable files is into the Scripts directory of
the virtual environment.

		(optional) download and install a database connector other than
sqlite3. TODO: still don’t know how to do this for
psycopg2. On Windows, pip does not manage install it.

		download the bauble.classic sources (using git) from:
http://www.github.com/mfrasca/bauble.classic/

		activate the virtual environment.

		python setup.py install

		TODO: write a git-shell script that activates the virtual
environment, sets the language, invokes bauble.

		TODO: put the above git-shell script at a convenient place.

If you would like to generate and print PDF reports using Bauble’s
default report generator then you will need to download and install
Apache FOP [http://xmlgraphics.apache.org/fop/]. After extracting
the FOP archive you will need to include the directory you extracted
to in your PATH.

Next...

Connecting to a database.

Troubleshooting the Install

		What are the packages that are installed by Bauble:

The following packages are required by Bauble

		SQLAlchemy

		lxml

The following packages are optional:

		Mako - required by the template based report generator

		gdata - required by the Picasa photos InfoBox

		Couldn’t install lxml.

The lxml packages have to be compile with a C compiler. If you
don’t have a Make sure the libxml and libxsl packages are
installed. Installing the Cython packages. On Linux you will
have to install the gcc package. On Windows there should be a
precompiled version available at
http://pypi.python.org/pypi/lxml/2.1.1

		Couldn’t install gdata.

For some reason the Google’s gdata package lists itself in the
Python Package Index but doesn’t work properly with the
easy_install command. You can download the latest gdata package
from:

http://code.google.com/p/gdata-python-client/downloads/list

Unzip it and run ``python setup.py installw` in the folder you unzip it to.

Next...

Connecting to a database.

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

it/installing.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Installation

bauble.classic is a cross-platform program and it will run on unix machines
like Linux and MacOSX, as well as on Windows.

To install Bauble first requires that you install its dependencies that
cannot be installed automatically. These include virtualenvwrapper, PyGTK
and pip. Python and GTK+, you probably already have. As long as you have
these packages installed then Bauble should be able to install the rest of
its dependencies by itself.

Note

If you follow these installation steps, you will end with Bauble
running within a Python virtual environment, all Python
dependencies installed locally, non conflicting with any other
Python program you may have on your system.

if you later choose to remove Bauble, you simply remove the
virtual environment, which is a directory, with all of its
content.

Installing on Linux

		Make sure your Python [http://www.python.org] version is 2.4
or greater, that you have the develompent environment for GTK+ [http://www.gtk.org] and that you have installed PyGTK [http://www.pygtk.org] using your package manager (ubuntu,
debian: python-gtk2).

		Download and extract the Bauble source package from

https://github.com/mfrasca/bauble.classic.git

		Make and activate a virtual environment with
--system-site-packages.

		If you would like to use the default SQLite [http://sqlite.org/] database or you don’t know what this means
then you can skip this step. If you would like to use a database
backend other than the default SQLite backend then you will also
need to install a database connector.

If you would like to use a PostgreSQL [http://www.postgresql.org]
database then install psycopg2 with the following commands:

pip install -U psycopg2

		In the installation directory execute the following command:

python setup.py install

If this doesn’t complete successfully see Troubleshooting the Install.

		Any time you want to run Bauble, open a terminal window, activate
the virtual environment and execute the bauble command.

Next...

Connecting to a database.

Installing on MacOSX

Being MacOSX a unix environment, most stuff should work just like in
Linux, but we’ve never tried. Feedback highly welcome.

Next...

Connecting to a database.

Installing on Windows

The Windows installer used to be a “batteries-included” installer,
installing everything needed to run Bauble. The current maintainer
of bauble.classic cannot run Windows applications. If you want to
run the latest version of bauble on Windows: download and install
the dependencies and then install Bauble from the source package.

Please report any trouble and help with packaging will be very
welcome.

Note

Bauble has been tested with and is known to work on
Windows XP and Windows-8. Although it should work fine on other
versions Windows it has not been thoroughly tested.

the installation steps on Windows:

		Install GTK+. The easiest way to install GTK+ is to download the
latest runtime packages from gtk-win.sourceforge.net [http://gtk-win.sourceforge.net/home/index.php/Downloads].

Note

The gtk-win package currently doesn’t support SVG which can
cause a problem with Bauble.

There is also a script in the Bauble source archive in
scripts/install_gtk.py which will download the GTK+ Win32
installer. This will also download and install the SVG pixbuf
loader for GTK+.

		download and install Python 2.x (32bit) from:

http://www.python.org

Bauble has been developed and tested using Python 2.x. It will
definitely not run on Python 3.x. If you are interested in helping
port to Python 3.x, please contact the Bauble maintainers.

		download and install pygtk (requires 32bit python) from:

http://ftp.gnome.org/pub/GNOME/binaries/win32/pygtk/

		download and install pip from:

http://bootstrap.pypa.io/get-pip.py

		download and install git (comes with a unix-like sh).

		install virtualenvwrapper-win (using pip)

		create the virtual environment now.

		download gettext from:

http://www.boost.org/doc/libs/1_56_0/libs/locale/doc/html/gettext_for_windows.html

You will need manually unpack the statically linked binaries,
Windows will probably complain about the risks of unpacking a zip
archive that contains executable files, ignore this. A safe place
to put the executable files is into the Scripts directory of
the virtual environment.

		(optional) download and install a database connector other than
sqlite3. TODO: still don’t know how to do this for
psycopg2. On Windows, pip does not manage install it.

		download the bauble.classic sources (using git) from:
http://www.github.com/mfrasca/bauble.classic/

		activate the virtual environment.

		python setup.py install

		TODO: write a git-shell script that activates the virtual
environment, sets the language, invokes bauble.

		TODO: put the above git-shell script at a convenient place.

If you would like to generate and print PDF reports using Bauble’s
default report generator then you will need to download and install
Apache FOP [http://xmlgraphics.apache.org/fop/]. After extracting
the FOP archive you will need to include the directory you extracted
to in your PATH.

Next...

Connecting to a database.

Troubleshooting the Install

		What are the packages that are installed by Bauble:

The following packages are required by Bauble

		SQLAlchemy

		lxml

The following packages are optional:

		Mako - required by the template based report generator

		gdata - required by the Picasa photos InfoBox

		Couldn’t install lxml.

The lxml packages have to be compile with a C compiler. If you
don’t have a Make sure the libxml and libxsl packages are
installed. Installing the Cython packages. On Linux you will
have to install the gcc package. On Windows there should be a
precompiled version available at
http://pypi.python.org/pypi/lxml/2.1.1

		Couldn’t install gdata.

For some reason the Google’s gdata package lists itself in the
Python Package Index but doesn’t work properly with the
easy_install command. You can download the latest gdata package
from:

http://code.google.com/p/gdata-python-client/downloads/list

Unzip it and run ``python setup.py installw` in the folder you unzip it to.

Next...

Connecting to a database.

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

it/searching.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Searching in Bauble

Searching allows you to view, browse and create reports from your
data. You can perform searches by either entering the queries in the
main search entry or by using the Query Builder to create the queries
for you. The results of Bauble searches are listed in the main window.

The Query Builder

The Query Builder can help you build complex search queries through a
point and click interface. To open the Query Builder click the to the
left of the search entry or select Tools‣Query
Builder from the menu.

After opening the Query Builder you must select a search domain. The
search domain will determine the type of data that is returned and the
properties that you can search. The search domain is similar to a
table in the database and the properties would be the columns on the
table. Often the table/domain and properties/columns are the same but
not always.

Once a search domain is selected you can then select a property of the
domain to compare values to. The search operator can then be changed
for how you want to make the search comparison. Finally you must
enter a value to compare to the search property. If the search
property you have selected can only have specific values then a list
of possible values will be provided for you to choose from.

If multiple search properties are necessary then clicking on the plus
sign will add more search properties. Select And/Or next to the
property name choose how the properties will be combined in the search
query.

When you are done building your query click OK to perform the search.

The Query Language

Three are three types of search queries available in Bauble. You can
search by value, expression or query.

All searches are case insensitive so searching for Maxillaria and
maxillaria will return the same results.

Search by Value

Search by value is the simplest way to search. You just type in a
string and see what matches. Which fields/columns are search for your
string depends on how the different plugins are configured. For
example, by default the PlantPlugin search the family name, the genus
name, the species and infraspecific species names, vernacular names
and geography. So if you want to search in the notes field of any of
these types then searching by value is not the search you’re looking
for.

Examples of searching by value would be: Maxillaria, Acanth,
2008.1234, 2003.2.1

Search string are separated by spaces. For example if you enter the
search string Block 10 then Bauble will search for the strings Block
and 10 and return all the results that match either of these
strings. If you want to search for Block 10 as a while string then you
should quote the string like "Block 10".

Search by Expression

Searching with expression gives you a little more control over what
you are searching for. It can narrow the search down to a specific
domain. Expression consist of a domain, an operator and a value. For
example the search: gen=Maxillaria would return all the genera that
match the name Maxillaria. In this case the domain is gen, the
operator is = and the value is Maxillaria.

The search string gen like max% would return all the genera whose
names start with “Max”. In this case the domain again is gen, the
operator is like, which allows for “fuzzy” searching and the value is
max%. The percent sign is used as a wild card so if you search for
max% then it search for all value that start with max. If you search
for %max it searches for all values that end in max. The string %max%a
would search for all value that contain max and end in a.

For more information about the different search domain and their short-hand
aliases, see search-domains .

If expression are invalid they are usually used as search by value
searchs. For example the search string gen= will execute a search by
value for the string gen and the search string gen like will search
for the string gen and the string like.

Search by Query

Queries allow the most control over searching. With queries you can
search across relations, specific columns and join search using
boolean operators like AND and OR.

		An example of a query would be:

		plant where accession.species.genus.family=Fabaceae and location.site="Block 10"

This query would return all the plants whose family are Fabaceae and
are located in Block 10.

Searching with queries usually requires some knowledge of the Bauble
internals and database table layouts.

A couple of useful examples:

Which locations are in use:
location where plants.id!=0

Which genera are associated to at least one accession:
genus where species.accession.id!=0

Domains

The following are the common search domain and the columns they search
by default. The default columns are used when searching by value and
expression. The queries do not use the default columns.

		Domains:		family, fam: Search bauble.plugins.plants.Family

genus, gen: Search bauble.plugins.plants.Genus

species, sp: Search bauble.plugins.plants.Species

geography: Search bauble.plugins.plants.Geography

acc: Search bauble.plugins.garden.Accession

plant: Search bauble.plugins.garden.Plant

location, loc: Search bauble.plugins.garden.Location

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

es/searching.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Searching in Bauble

Searching allows you to view, browse and create reports from your
data. You can perform searches by either entering the queries in the
main search entry or by using the Query Builder to create the queries
for you. The results of Bauble searches are listed in the main window.

The Query Builder

The Query Builder can help you build complex search queries through a
point and click interface. To open the Query Builder click the to the
left of the search entry or select Tools‣Query
Builder from the menu.

After opening the Query Builder you must select a search domain. The
search domain will determine the type of data that is returned and the
properties that you can search. The search domain is similar to a
table in the database and the properties would be the columns on the
table. Often the table/domain and properties/columns are the same but
not always.

Once a search domain is selected you can then select a property of the
domain to compare values to. The search operator can then be changed
for how you want to make the search comparison. Finally you must
enter a value to compare to the search property. If the search
property you have selected can only have specific values then a list
of possible values will be provided for you to choose from.

If multiple search properties are necessary then clicking on the plus
sign will add more search properties. Select And/Or next to the
property name choose how the properties will be combined in the search
query.

When you are done building your query click OK to perform the search.

The Query Language

Three are three types of search queries available in Bauble. You can
search by value, expression or query.

All searches are case insensitive so searching for Maxillaria and
maxillaria will return the same results.

Search by Value

Search by value is the simplest way to search. You just type in a
string and see what matches. Which fields/columns are search for your
string depends on how the different plugins are configured. For
example, by default the PlantPlugin search the family name, the genus
name, the species and infraspecific species names, vernacular names
and geography. So if you want to search in the notes field of any of
these types then searching by value is not the search you’re looking
for.

Examples of searching by value would be: Maxillaria, Acanth,
2008.1234, 2003.2.1

Search string are separated by spaces. For example if you enter the
search string Block 10 then Bauble will search for the strings Block
and 10 and return all the results that match either of these
strings. If you want to search for Block 10 as a while string then you
should quote the string like "Block 10".

Search by Expression

Searching with expression gives you a little more control over what
you are searching for. It can narrow the search down to a specific
domain. Expression consist of a domain, an operator and a value. For
example the search: gen=Maxillaria would return all the genera that
match the name Maxillaria. In this case the domain is gen, the
operator is = and the value is Maxillaria.

The search string gen like max% would return all the genera whose
names start with “Max”. In this case the domain again is gen, the
operator is like, which allows for “fuzzy” searching and the value is
max%. The percent sign is used as a wild card so if you search for
max% then it search for all value that start with max. If you search
for %max it searches for all values that end in max. The string %max%a
would search for all value that contain max and end in a.

For more information about the different search domain and their short-hand
aliases, see search-domains .

If expression are invalid they are usually used as search by value
searchs. For example the search string gen= will execute a search by
value for the string gen and the search string gen like will search
for the string gen and the string like.

Search by Query

Queries allow the most control over searching. With queries you can
search across relations, specific columns and join search using
boolean operators like AND and OR.

		An example of a query would be:

		plant where accession.species.genus.family=Fabaceae and location.site="Block 10"

This query would return all the plants whose family are Fabaceae and
are located in Block 10.

Searching with queries usually requires some knowledge of the Bauble
internals and database table layouts.

A couple of useful examples:

Which locations are in use:
location where plants.id!=0

Which genera are associated to at least one accession:
genus where species.accession.id!=0

Domains

The following are the common search domain and the columns they search
by default. The default columns are used when searching by value and
expression. The queries do not use the default columns.

		Domains:		family, fam: Search bauble.plugins.plants.Family

genus, gen: Search bauble.plugins.plants.Genus

species, sp: Search bauble.plugins.plants.Species

geography: Search bauble.plugins.plants.Geography

acc: Search bauble.plugins.garden.Accession

plant: Search bauble.plugins.garden.Plant

location, loc: Search bauble.plugins.garden.Location

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

es/started.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Primeros Pasos

Conectarse a una base de datos

Al arrancar Bauble, se activa un cuadro de diálogo que te pide escojer cual
conexión utilizar.

[image: es/../web/images/screenshots/0.7/bauble-closed-conn-dialog-0.7.0.png]
En este cuadro puedes seleccionar los distintos parametros de la conexión.

If this is the first time that you are starting Bauble then you will
not having any connections to choose from. Click on the add button to
create a new connection.

By default Bauble uses the file-based SQLite database. If you use the
default filename then Bauble creates a database file with the same
name as the connection in ~/.bauble on Linux or Application
Data\Bauble on Windows.

Bauble allows you to connect to any existing database. If you connect
to an empty database a message will popup asking asking you if you
would like to create a new database.

		TODO: If you are connecting to an existing database you can continue to Inserting or Searching

Creating a new database

To create a new database you have to first connect to a database. See
Connecting to a database.

If you are connecting using the default SQLite database backend then Bauble
can handler everything that needs to be done to create a new
database.

If you are connecting to a server based database like PostgreSQL [http://www.postgresql.org] will have to manually create the
database and permissions for the database while Bauble will create the
tables and import the default data set. Creating a database on
aserver based database is beyond the scope of this manual. If you just
got the chills or sick at your stomach I recommend you just stick with
SQLite.

If you have connected to a database that has not yet been initialized
by Bauble then you will get the following dialog:

[image: es/../web/images/screenshots/bauble-create-new-0.7.png]
Be careful because if you have entered the wrong connection parameters
it is possible to overwrite an existing database at this connection.

If you are sure you want to create a database at this connection then
select “Yes”. Bauble will then start creating the database tables and
importing the default data. This can take a minute or two so while all
of the default data is imported into the database so be patient.

XXX. TODO: Once the default database has been created then you are
ready to start inserting or searching...

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

it/index.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Documentation for Bauble 1.0

[image: https://travis-ci.org/mfrasca/bauble.classic.svg?branch=master]
Bauble is an application for managing botanical specimen collections.
With it you can create a searchable database of plant records.

Bauble is also extensible through plugins and can be customized to suit
the needs of the institution.

It is open [http://www.opensource.org] and free [http://www.fsf.org] and is released under the GNU Public License [http://www.fsf.org/licensing/licenses/gpl.html]

Installing Bauble

		Installation
		Installing on Linux

		Installing on MacOSX

		Installing on Windows

		Troubleshooting the Install

Using Bauble

		Getting Started
		Connecting to a database

		Creating a new database

		Searching in Bauble
		The Query Builder

		The Query Language

		Editing and Inserting Data
		Notes

		Family

		Genus

		Species/Taxon

		Accessions

		Plant

		Locations

		Tagging

		Generating reports
		Using the Mako Report Formatter

		Using the XSL Report Formatter

		Importing and Exporting Data
		Importing from CSV

		Exporting to CSV

		Managing Users
		Creating Users

		Permissions

Bauble Development

		Downloading the source

		Building the source
		Building (on Windows)

		Extending Bauble with Plugins

		API Documentation
		bauble

		bauble.db

		bauble.connmgr

		bauble.editor

		bauble.i18n

		bauble.ui

		bauble.meta

		bauble.paths

		bauble.pluginmgr

		bauble.prefs

		bauble.task

		bauble.types

		bauble.utils

		bauble.view

		bauble.search

		bauble.plugins.plants

		bauble.plugins.garden

		bauble.plugins.abcd

		bauble.plugins.imex

		bauble.plugins.report

		bauble.plugins.report.xsl

		bauble.plugins.report.mako

		bauble.plugins.tag

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

search.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

es/imex.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Importing and Exporting Data

Although Bauble can be extended through plugins to support alternate
import and export formats, by default it can only import and export
comma seperated values files or CSV.

There is some support for exporting to the Access for Biological
Collections Data it is limited.

There is also limited support for exporting to an XML format that more
or less reflects exactly the tables and row of the database.

Exporting ABCD and XML will not be covered here.

Warning

Importing files will most likely destroy any data you
have in the database so make sure you have backed up your data.

Importing from CSV

In general it is best to only import CSV files into Bauble that were
previously exported from Bauble. It is possible to import any CSV file
but that is more advanced that this doc will cover.

To import CSV files into Bauble select
Tools‣Export‣Comma Seperated Values from the
menu.

After clicking OK on the dialog that ask if you are sure you know what
you’re doing a file chooser will open. In the file chooser select the
files you want to import.

Exporting to CSV

To export the Bauble data to CSV select
Tools‣Export‣Comma Seperated Values from the menu.

This tool will ask you to select a directory to export the CSV data.
All of the tables in Bauble will be exported to files in the format
tablename.txt where tablename is the name of the table where the data
was exported from.

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

it/extending.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Extending Bauble with Plugins

Nearly everything about Bauble is extensible through plugins. Plugins
can create tables, define custom searchs, add menu items, create
custom commands and more.

To create a new plugin you must extend the bauble.pluginmgr.Plugin
class.

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

it/imex.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Importing and Exporting Data

Although Bauble can be extended through plugins to support alternate
import and export formats, by default it can only import and export
comma seperated values files or CSV.

There is some support for exporting to the Access for Biological
Collections Data it is limited.

There is also limited support for exporting to an XML format that more
or less reflects exactly the tables and row of the database.

Exporting ABCD and XML will not be covered here.

Warning

Importing files will most likely destroy any data you
have in the database so make sure you have backed up your data.

Importing from CSV

In general it is best to only import CSV files into Bauble that were
previously exported from Bauble. It is possible to import any CSV file
but that is more advanced that this doc will cover.

To import CSV files into Bauble select
Tools‣Export‣Comma Seperated Values from the
menu.

After clicking OK on the dialog that ask if you are sure you know what
you’re doing a file chooser will open. In the file chooser select the
files you want to import.

Exporting to CSV

To export the Bauble data to CSV select
Tools‣Export‣Comma Seperated Values from the menu.

This tool will ask you to select a directory to export the CSV data.
All of the tables in Bauble will be exported to files in the format
tablename.txt where tablename is the name of the table where the data
was exported from.

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

it/devdl.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Downloading the source

The Bauble source can be downloaded from our source
repository on github [http://github.com/mfrasca/bauble.classic].

We do not currently release a specially quality checked Bauble version,
all of our commits to the Master branch are equally quality checked.

To check out the most recent code from the source repository you will need
to install the Git [http://www.git.org] version control system. Git is
incuded in all reasonable Linux distributions and can be installed on all
current operating systems.

Once you have installed Git you can checkout the latest Bauble code with
the following command:

git clone https://github.com/mfrasca/bauble.classic.git

For more information about other available code branches go to
bauble.classic on github [http://www.github.com/Bauble/bauble.classic].

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

es/extending.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Extending Bauble with Plugins

Nearly everything about Bauble is extensible through plugins. Plugins
can create tables, define custom searchs, add menu items, create
custom commands and more.

To create a new plugin you must extend the bauble.pluginmgr.Plugin
class.

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

it/report.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Generating reports

Using the Mako Report Formatter

The Mako report formatter uses the Mako template language for
generating reports. More information about Mako and its language can
be found at makotemplates.org [http://www.makotemplates.org].

The Mako templating system should already be installed on your
computer if Bauble is installed.

Creating reports with Mako is similar in the way that you would create
a web page from a template. It is much simpler than the XSL
Formatter(see below) and should be relatively easy to create template
for anyone with a little but of programming experience.

The template generator will use the same file extension as the
template which should indicate the type of output the template with
create. For example, to generate an HTML page from your template you
should name the template something like report.html. If the template
will generate a comma seperated value file you should name the
template report.csv.

The template will receive a variable called values which will
contain the list of values in the current search.

The type of each value in values will be the same as the search
domain used in the search query. For more information on search
domains see Domains.

If the query does not have a search domain then the values could all
be of a different type and the Mako template should prepared to handle
them.

Using the XSL Report Formatter

The XSL report formatter requires an XSL to PDF renderer to
convert the data to a PDF file. Apache FOP is is a free and
open-source XSL->PDF renderer and is recommended.

If using Linux, Apache FOP should be installable using your package
manager. On Debian/Ubuntu it is installable as fop in Synaptic or
using the following command:

apt-get install fop

Installing Apache FOP on Windows

You have two options for installing FOP on Windows. The easiest way is
to download the prebuilt ApacheFOP-0.95-1-setup.exe [http://code.google.com/p/apache-fop-installer/downloads/detail?name=ApacheFOP-0.95-1-setup.exe&can=2&q=#makechanges] installer.

Alternatively you can download the archive [http://www.apache.org/dist/xmlgraphics/fop/binaries/]. After
extracting the archive you must add the directory you extracted the
archive to to your PATH environment variable.

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

es/building.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Building the source

Building a python program is a bit of a contraddiction. You don’t normally
build nor compile a python program, you run it in its environment, and
python will process the modules loaded and produce faster-loading compiled
python files. You can, however, produce a Windows executable from a python
script, executable containing the whole python environment and dependencies.

Building (on Windows)

		In order to build a Bauble executable you will first need to download the
source code. For more information about download the Bauble source go to
Downloading the source.

		Follow all steps needed to set up a working Bauble environment from
Installation, but skip the final install step.

		instead of installing Bauble, you produce a Windows executable. This
is achieved with the py2exe target, which is only available on
Windows systems:

python setup.py py2exe

		At this point you can run Bauble. To run the compiled executable run:

.\dist\bauble.exe

or copy the executable to wherever you think appropriate.

		To optionally build an NSIS installer package you must install NSIS
from nsis.sourceforge.net [http://nsis.sourceforge.net/Download]. After installing NSIS
right click on .\scripts\build.nsi in Explorer and select
Compile NSIS Script.

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

it/editing.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Editing and Inserting Data

The main way that we add or change information in Bauble is by using
the editors. Each basic type of data has its own editor. For example
there is a Family editor, a Genus editor, an Accession editor, etc.

To create a new record click on the Insert menu on
the menubar and then select the type of record your would like to
create. This will open a new blank editor for the type.

To edit an existing record in the database right click on an item in
the search results and select Edit from the popup
menu. This will open an editor that will allow you to change the
values on the record that you selected.

Most types also have children which you can add by right clicking on the
parent and selecting “Add ???...” on the context menu. For example, a
Family has Genus children: you can add a Genus to a Family by right clicking
on a Family and selecting “Add genus”.

Notes

Almost all of the editors in Bauble have a Notes tab which should work
the same regardless of which editor you are using.

If you enter a web address in a note then the link will show up in the
Links box when the item your are editing is selected in the search results.

You can browse the notes for an item in the database using the Notes
box at the bottom of the screen. The Notes box will be desensitized
if the selected item does not have any notes.

Family

The Family editor allows you to add or change a botanical family.

The Family field on the editor will change the name of the family.
The Family field is required.

The Qualifier field will change the family qualifier. The value can
either be sensu lato, sensu stricto or nothing.

Synonyms allow you to add other families that are synonyms with the
family you are currently editing. To add a new synonyms type in a
family name in the entry. You must select a family name from the list
of completions. Once you have selcted a family name that you want to
add as a synonym click on the Add button next to the synonym list and
it will add the selected synonym to the list. To remove a synonym
select the synonym from the list and click on the Remove button.

To cancel your changes without saving then click on the Cancel button.

To save the family you are working on then click OK.

To save the family you are working on and add a genus to it then click on
the Add Genera button.

To add another family when you are finished editing the current one
click on the Next button on the bottom. This will save the current
family and open a new blank family editor.

Genus

The Genus editor allows you to add or change a botanical genus.

The Family field on the genus editor allows you to choose the family
for the genus. When you begin type a family name it will show a list
of families to choose from. The family name must already exist in the
database before you can set it as the family for the genus.

The Genus field allows you to set the genus for this entry.

The Author field allows you to set the name or abbreviation of the
author(s) for the genus.

Synonyms allow you to add other genera that are synonyms with the
genus you are currently editing. To add a new synonyms type in a
genus name in the entry. You must select a genus name from the list
of completions. Once you have selcted a genus name that you want to
add as a synonym click on the Add button next to the synonym list and
it will add the selected synonym to the list. To remove a synonym
select the synonym from the list and click on the Remove button.

To cancel your changes without saving then click on the Cancel button.

To save the genus you are working on then click OK.

To save the genus you are working on and add a species to it then click on
the Add Species button.

To add another genus when you are finished editing the current one
click on the Next button on the bottom. This will save the current
genus and open a new blank genus editor.

Species/Taxon

For historical reasons called a species, but by this we mean a taxon at
rank species or lower. It represents a unique name in the database. The
species editor will allow you to construct the name as well as associate
metadata with the taxon such as its distribution, synonyms and other
information.

The Infraspecific parts in the species editor will allow you to specify
the taxon further than at species rank.

To cancel your changes without saving then click on the Cancel button.

To save the species you are working on then click OK.

To save the species you are working on and add an accession to it then click on
the Add Accession button.

To add another species when you are finished editing the current one
click on the Next button on the bottom. This will save the current
species and open a new blank species editor.

Accessions

The Accession editor allows us to add an accession to a species. In
Bauble an accession represents a group of plants or clones. The
accession would refer maybe a group of seed or cuttings from a
species. A plant would be an individual from that accesssion, i.e. a
specific plant in a specific location.

Accession Source

The source of the accessions lets you add more information about where
this accession came from. At the moment the type of the source can be
either a Collection or a Donation.

Collection

A Collection.

Donation

A Donation.

Plant

The Plant editor.

Creating multiple plants

You can create multiple Plants by using ranges in the code entry.
This is only allowed when creating new plants and it is not possible
when editing existing Plants in the database.

For example the range, 3-5 will create plant with code 3,4,5. The
range 1,4-7,25 will create plants with codes 1,4,5,6,7,25.

When you enter the range in the plant code entry the entry will turn
blue to indicate that you are now creating multiple plants. Any
fields that are set while in this mode will be copied to all the
plants that are created.

Locations

The Location editor

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

es/devdl.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Downloading the source

The Bauble source can be downloaded from our source
repository on github [http://github.com/mfrasca/bauble.classic].

We do not currently release a specially quality checked Bauble version,
all of our commits to the Master branch are equally quality checked.

To check out the most recent code from the source repository you will need
to install the Git [http://www.git.org] version control system. Git is
incuded in all reasonable Linux distributions and can be installed on all
current operating systems.

Once you have installed Git you can checkout the latest Bauble code with
the following command:

git clone https://github.com/mfrasca/bauble.classic.git

For more information about other available code branches go to
bauble.classic on github [http://www.github.com/Bauble/bauble.classic].

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

it/building.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Building the source

Building a python program is a bit of a contraddiction. You don’t normally
build nor compile a python program, you run it in its environment, and
python will process the modules loaded and produce faster-loading compiled
python files. You can, however, produce a Windows executable from a python
script, executable containing the whole python environment and dependencies.

Building (on Windows)

		In order to build a Bauble executable you will first need to download the
source code. For more information about download the Bauble source go to
Downloading the source.

		Follow all steps needed to set up a working Bauble environment from
Installation, but skip the final install step.

		instead of installing Bauble, you produce a Windows executable. This
is achieved with the py2exe target, which is only available on
Windows systems:

python setup.py py2exe

		At this point you can run Bauble. To run the compiled executable run:

.\dist\bauble.exe

or copy the executable to wherever you think appropriate.

		To optionally build an NSIS installer package you must install NSIS
from nsis.sourceforge.net [http://nsis.sourceforge.net/Download]. After installing NSIS
right click on .\scripts\build.nsi in Explorer and select
Compile NSIS Script.

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

es/index.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Documentación de Bauble 1.0

[image: https://travis-ci.org/mfrasca/bauble.classic.svg?branch=master]
Bauble es una aplicación para manejar colecciones de objectos botánicos.
Utilizando Bauble puedes crear una base de datos de plant records, y
Bauble te permite de interrogar la base de datos.

Bauble puede ser ampliado con plugin y se puede adaptar a las exigencias
de cada institución.

Bauble es abierto [http://www.opensource.org] y libre [http://www.fsf.org] y es distribuido bajo la Licencia Pública GNU (GPL) [http://www.fsf.org/licensing/licenses/gpl.html]

Como instalar Bauble

		Installation
		Installing on Linux

		Installing on MacOSX

		Installing on Windows

		Troubleshooting the Install

Guía al uso de Bauble

		Primeros Pasos
		Conectarse a una base de datos

		Creating a new database

		Searching in Bauble
		The Query Builder

		The Query Language

		Editing and Inserting Data
		Notes

		Family

		Genus

		Species/Taxon

		Accessions

		Plant

		Locations

		Tagging

		Generating reports
		Using the Mako Report Formatter

		Using the XSL Report Formatter

		Importing and Exporting Data
		Importing from CSV

		Exporting to CSV

		Managing Users
		Creating Users

		Permissions

Contribuir al desarrollo de Bauble

		Downloading the source

		Building the source
		Building (on Windows)

		Extending Bauble with Plugins

		API Documentation
		bauble

		bauble.db

		bauble.connmgr

		bauble.editor

		bauble.i18n

		bauble.ui

		bauble.meta

		bauble.paths

		bauble.pluginmgr

		bauble.prefs

		bauble.task

		bauble.types

		bauble.utils

		bauble.view

		bauble.search

		bauble.plugins.plants

		bauble.plugins.garden

		bauble.plugins.abcd

		bauble.plugins.imex

		bauble.plugins.report

		bauble.plugins.report.xsl

		bauble.plugins.report.mako

		bauble.plugins.tag

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

it/api.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

API Documentation

bauble

The top level module for Bauble.

		
bauble.version = '1.0.32'

		str(object=’‘) -> string

Return a nice string representation of the object.
If the argument is a string, the return value is the same object.

		
bauble.gui = None

		bauble.gui is the instance bauble.ui.GUI

		
bauble.command_handler(cmd, arg)

		Call a command handler.

		Parameters:		
		cmd (str) – The name of the command to call

		arg (list) – The arg to pass to the command handler

		
bauble.main(uri=None)

		Run the main Bauble application.

		Parameters:		uri – the URI of the database to connect to. For more information

about database URIs see http://www.sqlalchemy.org/docs/05/dbengine.html#create-engine-url-arguments

		
bauble.main_is_frozen()

		Return True if we are running in a py2exe environment, else
return False

		
bauble.quit()

		Stop all tasks and quit Bauble.

		
bauble.save_state()

		Save the gui state and preferences.

bauble.db

		
bauble.db.Base

		All tables/mappers in Bauble which use the SQLAlchemy declarative
plugin for declaring tables and mappers should derive from this
class.

An instance of sqlalchemy.ext.declarative.Base

		
bauble.db.metadata

		The default metadata for all Bauble tables.

An instance of sqlalchemy.schema.MetaData

bauble.connmgr

bauble.editor

bauble.i18n

The i18n module defines the _() function for creating translatable strings.

_() is added to the Python builtins so there is no reason to import
this module more than once in an application. It is usually imported
in bauble

bauble.ui

bauble.meta

bauble.paths

Access to standard paths used by Bauble.

		
bauble.paths.main_dir()

		Returns the path of the bauble executable.

		
bauble.paths.lib_dir()

		Returns the path of the bauble module.

		
bauble.paths.locale_dir()

		Returns the root path of the locale files

		
bauble.paths.user_dir()

		Returns the path to where Bauble settings should be saved.

bauble.pluginmgr

bauble.prefs

bauble.task

The bauble.task module allows you to queue up long running tasks. The
running tasks still block but allows the GUI to update.

		
bauble.task.queue(task)

		Run a task.

task should be a generator with side effects. it does not matter what it
yields, it is important that it does stop from time to time yielding
whatever it wants to, and causing the side effect it has to cause.

		
bauble.task.set_message(msg)

		A convenience function for setting a message on the
statusbar. Returns the message id

		
bauble.task.clear_messages()

		Clear all the messages from the statusbar that were set with
bauble.task.set_message()

bauble.types

bauble.utils

A common set of utility functions used throughout Bauble.

		
bauble.utils.find_dependent_tables(table, metadata=None)

		Return an iterator with all tables that depend on table. The
tables are returned in the order that they depend on each
other. For example you know that table[0] does not depend on
tables[1].

		Parameters:		
		table – The tables who dependencies we want to find

		metadata – The sqlalchemy.engine.MetaData object
that holds the tables to search through. If None then use
bauble.db.metadata

		
bauble.utils.tree_model_has(tree, value)

		Return True or False if value is in the tree.

		
bauble.utils.search_tree_model(parent, data, cmp=<function <lambda>>)

		Return a iterable of gtk.TreeIter instances to all occurences
of data in model

		Parameters:		
		parent – a gtk.TreeModel or a gtk.TreeModelRow instance

		data – the data to look for

		cmp – the function to call on each row to check if it matches
data, default is C{lambda row, data: row[0] == data}

		
bauble.utils.clear_model(obj_with_model)

		

		Parameters:		obj_with_model – a gtk Widget that has a gtk.TreeModel that
can be retrieved with obj_with_mode.get_model

Remove the model from the object, deletes all the items in the
model, clear the model and then delete the model and set the model
on the object to None

		
bauble.utils.combo_set_active_text(combo, value)

		does the same thing as set_combo_from_value but this looks more like a
GTK+ method

		
bauble.utils.set_combo_from_value(combo, value, cmp=<function <lambda>>)

		Find value in combo model and set it as active, else raise ValueError
cmp(row, value) is the a function to use for comparison

Note

if more than one value is found in the combo then the
first one in the list is set

		
bauble.utils.combo_get_value_iter(combo, value, cmp=<function <lambda>>)

		Returns a gtk.TreeIter that points to first matching value in the
combo’s model.

		Parameters:		
		combo – the combo where we should search

		value – the value to search for

		cmp – the method to use to compare rows in the combo model and value,
the default is C{lambda row, value: row[0] == value}

Note

if more than one value is found in the combo then the first one
in the list is returned

		
bauble.utils.set_widget_value(widget, value, markup=False, default=None, index=0)

		

		Parameters:		
		widget – an instance of gtk.Widget

		value – the value to put in the widget

		markup – whether or not value is markup

		default – the default value to put in the widget if the value is None

		index – the row index to use for those widgets who use a model

Note

any values passed in for widgets that expect a string will call
the values __str__ method

		
bauble.utils.create_message_dialog(msg, type=<enum GTK_MESSAGE_INFO of type GtkMessageType>, buttons=<enum GTK_BUTTONS_OK of type GtkButtonsType>, parent=None)

		Create a message dialog.

		Parameters:		
		msg – The markup to use for the message. The value should be
escaped in case it contains any HTML entities.

		type – A GTK message type constant. The default is gtk.MESSAGE_INFO.

		buttons – A GTK buttons type constant. The default is
gtk.BUTTONS_OK.

		parent – The parent window for the dialog

Returns a gtk.MessageDialog

		
bauble.utils.message_dialog(msg, type=<enum GTK_MESSAGE_INFO of type GtkMessageType>, buttons=<enum GTK_BUTTONS_OK of type GtkButtonsType>, parent=None)

		Create a message dialog with bauble.utils.create_message_dialog()
and run and destroy it.

Returns the dialog’s response.

		
bauble.utils.create_yes_no_dialog(msg, parent=None)

		Create a dialog with yes/no buttons.

		
bauble.utils.yes_no_dialog(msg, parent=None, yes_delay=-1)

		Create and run a yes/no dialog.

Return True if the dialog response equals gtk.RESPONSE_YES

		Parameters:		
		msg – the message to display in the dialog

		parent – the dialog’s parent

		yes_delay – the number of seconds before the yes button should
become sensitive

		
bauble.utils.create_message_details_dialog(msg, details, type=<enum GTK_MESSAGE_INFO of type GtkMessageType>, buttons=<enum GTK_BUTTONS_OK of type GtkButtonsType>, parent=None)

		Create a message dialog with a details expander.

		
bauble.utils.message_details_dialog(msg, details, type=<enum GTK_MESSAGE_INFO of type GtkMessageType>, buttons=<enum GTK_BUTTONS_OK of type GtkButtonsType>, parent=None)

		Create and run a message dialog with a details expander.

		
bauble.utils.setup_text_combobox(combo, values=None, cell_data_func=None)

		Configure a gtk.ComboBox as a text combobox

NOTE: If you pass a cell_data_func that is a method of an object that
holds a reference to combo then the object will not be properly
garbage collected. To avoid this problem either don’t pass a
method of object or make the method static

		Parameters:		
		combo – gtk.ComboBox

		values – list vales or gtk.ListStore

		cell_date_func –

		
bauble.utils.setup_date_button(view, entry, button, date_func=None)

		Associate a button with entry so that when the button is clicked a
date is inserted into the entry.

		Parameters:		
		view – a bauble.editor.GenericEditorView

		entry – the entry that the data goes into

		button – the button that enters the data in entry

		date_func – the function that returns a string represention
of the date

		
bauble.utils.to_unicode(obj, encoding='utf-8')

		Return obj converted to unicode. If obj is already a unicode
object it will not try to decode it to converted it to <encoding>
but will just return the original obj

		
bauble.utils.utf8(obj)

		This function is an alias for to_unicode(obj, ‘utf-8’)

		
bauble.utils.xml_safe(obj, encoding='utf-8')

		Return a string with character entities escaped safe for xml, if the
str parameter is a string a string is returned, if str is a unicode object
then a unicode object is returned

		
bauble.utils.xml_safe_utf8(obj)

		This method is deprecated and just returns xml_safe(obj)

		
bauble.utils.natsort_key(obj)

		a key getter for sort and sorted function

the sorting is done on return value of obj.__str__() so we can sort
objects as well, i don’t know if this will cause problems with unicode

use like: sorted(some_list, key=utils.natsort_key)

		
bauble.utils.delete_or_expunge(obj)

		If the object is in object_session(obj).new then expunge it from the
session. If not then session.delete it.

		
bauble.utils.reset_sequence(column)

		If column.sequence is not None or the column is an Integer and
column.autoincrement is true then reset the sequence for the next
available value for the column...if the column doesn’t have a
sequence then do nothing and return

The SQL statements are executed directly from db.engine

This function only works for PostgreSQL database. It does nothing
for other database engines.

		
bauble.utils.make_label_clickable(label, on_clicked, *args)

		

		Parameters:		
		label – a gtk.Label that has a gtk.EventBox as its parent

		on_clicked – callback to be called when the label is clicked
on_clicked(label, event, data)

		
bauble.utils.enum_values_str(col)

		

		Parameters:		col – a string if table.col where col is an enum type

return a string with of the values on an enum type join by a comma

		
bauble.utils.which(filename, path=None)

		Return first occurence of file on the path.

		
bauble.utils.ilike(col, val, engine=None)

		Return a cross platform ilike function.

		
bauble.utils.range_builder(text)

		Return a list of numbers from a string range of the form 1-3,4,5

		
bauble.utils.topological_sort(items, partial_order)

		Perform topological sort.

		Parameters:		
		items – a list of items to be sorted.

		partial_order – a list of pairs. If pair (a,b) is in it, it
means that item a should appear before item b. Returns a list of
the items in one of the possible orders, or None if partial_order
contains a loop.

		
bauble.utils.get_distinct_values(column, session)

		Return a list of all the distinct values in a table column

		
bauble.utils.get_invalid_columns(obj, ignore_columns=['id'])

		Return column names on a mapped object that have values
which aren’t valid for the model.

Invalid columns meet the following criteria:
- nullable columns with null values
- ...what else?

		
bauble.utils.get_urls(text)

		Return tuples of http/https links and labels for the links. To
label a link prefix it with [label text],
e.g. [BBG]http://belizebotanic.org

		
class bauble.utils.GenericMessageBox

		Bases: gtk.EventBox

Abstract class for showing a message box at the top of an editor.

		
class bauble.utils.MessageBox(msg=None, details=None)

		Bases: bauble.utils.GenericMessageBox

A MessageBox that can display a message label at the top of an editor.

		
class bauble.utils.YesNoMessageBox(msg=None, on_response=None)

		Bases: bauble.utils.GenericMessageBox

A message box that can present a Yes or No question to the user

		
bauble.utils.add_message_box(parent, type=1)

		

		Parameters:		
		parent – the parent gtk.Box width to add the
message box to

		type – one of MESSAGE_BOX_INFO, MESSAGE_BOX_ERROR or
MESSAGE_BOX_YESNO

bauble.view

		
class bauble.view.SearchView.ViewMeta

		

bauble.search

bauble.plugins.plants

bauble.plugins.garden

bauble.plugins.abcd

bauble.plugins.imex

bauble.plugins.report

bauble.plugins.report.xsl

bauble.plugins.report.mako

bauble.plugins.tag

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

es/editing.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Editing and Inserting Data

The main way that we add or change information in Bauble is by using
the editors. Each basic type of data has its own editor. For example
there is a Family editor, a Genus editor, an Accession editor, etc.

To create a new record click on the Insert menu on
the menubar and then select the type of record your would like to
create. This will open a new blank editor for the type.

To edit an existing record in the database right click on an item in
the search results and select Edit from the popup
menu. This will open an editor that will allow you to change the
values on the record that you selected.

Most types also have children which you can add by right clicking on the
parent and selecting “Add ???...” on the context menu. For example, a
Family has Genus children: you can add a Genus to a Family by right clicking
on a Family and selecting “Add genus”.

Notes

Almost all of the editors in Bauble have a Notes tab which should work
the same regardless of which editor you are using.

If you enter a web address in a note then the link will show up in the
Links box when the item your are editing is selected in the search results.

You can browse the notes for an item in the database using the Notes
box at the bottom of the screen. The Notes box will be desensitized
if the selected item does not have any notes.

Family

The Family editor allows you to add or change a botanical family.

The Family field on the editor will change the name of the family.
The Family field is required.

The Qualifier field will change the family qualifier. The value can
either be sensu lato, sensu stricto or nothing.

Synonyms allow you to add other families that are synonyms with the
family you are currently editing. To add a new synonyms type in a
family name in the entry. You must select a family name from the list
of completions. Once you have selcted a family name that you want to
add as a synonym click on the Add button next to the synonym list and
it will add the selected synonym to the list. To remove a synonym
select the synonym from the list and click on the Remove button.

To cancel your changes without saving then click on the Cancel button.

To save the family you are working on then click OK.

To save the family you are working on and add a genus to it then click on
the Add Genera button.

To add another family when you are finished editing the current one
click on the Next button on the bottom. This will save the current
family and open a new blank family editor.

Genus

The Genus editor allows you to add or change a botanical genus.

The Family field on the genus editor allows you to choose the family
for the genus. When you begin type a family name it will show a list
of families to choose from. The family name must already exist in the
database before you can set it as the family for the genus.

The Genus field allows you to set the genus for this entry.

The Author field allows you to set the name or abbreviation of the
author(s) for the genus.

Synonyms allow you to add other genera that are synonyms with the
genus you are currently editing. To add a new synonyms type in a
genus name in the entry. You must select a genus name from the list
of completions. Once you have selcted a genus name that you want to
add as a synonym click on the Add button next to the synonym list and
it will add the selected synonym to the list. To remove a synonym
select the synonym from the list and click on the Remove button.

To cancel your changes without saving then click on the Cancel button.

To save the genus you are working on then click OK.

To save the genus you are working on and add a species to it then click on
the Add Species button.

To add another genus when you are finished editing the current one
click on the Next button on the bottom. This will save the current
genus and open a new blank genus editor.

Species/Taxon

For historical reasons called a species, but by this we mean a taxon at
rank species or lower. It represents a unique name in the database. The
species editor will allow you to construct the name as well as associate
metadata with the taxon such as its distribution, synonyms and other
information.

The Infraspecific parts in the species editor will allow you to specify
the taxon further than at species rank.

To cancel your changes without saving then click on the Cancel button.

To save the species you are working on then click OK.

To save the species you are working on and add an accession to it then click on
the Add Accession button.

To add another species when you are finished editing the current one
click on the Next button on the bottom. This will save the current
species and open a new blank species editor.

Accessions

The Accession editor allows us to add an accession to a species. In
Bauble an accession represents a group of plants or clones. The
accession would refer maybe a group of seed or cuttings from a
species. A plant would be an individual from that accesssion, i.e. a
specific plant in a specific location.

Accession Source

The source of the accessions lets you add more information about where
this accession came from. At the moment the type of the source can be
either a Collection or a Donation.

Collection

A Collection.

Donation

A Donation.

Plant

The Plant editor.

Creating multiple plants

You can create multiple Plants by using ranges in the code entry.
This is only allowed when creating new plants and it is not possible
when editing existing Plants in the database.

For example the range, 3-5 will create plant with code 3,4,5. The
range 1,4-7,25 will create plants with codes 1,4,5,6,7,25.

When you enter the range in the plant code entry the entry will turn
blue to indicate that you are now creating multiple plants. Any
fields that are set while in this mode will be copied to all the
plants that are created.

Locations

The Location editor

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

es/tagging.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Tagging

Tagging is an easy way to give context to an object or create a
collection of object that you want to recall later. For example if you
want to collect a bunch of plants that you later want to create a
report from you can tag them with the string “for that report i was
thinking about”. You can then select “for that report i was thinking
about” from the tags menu to show you all the objects you tagged.

Tagging can be done two ways. By selecting one or more items in the
search results and pressing Ctrl-T or by selecting
Tag‣Tag Selection from the menu. If you have
selected multiple items then only that tags that are common to all the
selected items will have a check next to it.

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

es/api.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

API Documentation

bauble

The top level module for Bauble.

		
bauble.version = '1.0.32'

		str(object=’‘) -> string

Return a nice string representation of the object.
If the argument is a string, the return value is the same object.

		
bauble.gui = None

		bauble.gui is the instance bauble.ui.GUI

		
bauble.command_handler(cmd, arg)

		Call a command handler.

		Parameters:		
		cmd (str) – The name of the command to call

		arg (list) – The arg to pass to the command handler

		
bauble.main(uri=None)

		Run the main Bauble application.

		Parameters:		uri – the URI of the database to connect to. For more information

about database URIs see http://www.sqlalchemy.org/docs/05/dbengine.html#create-engine-url-arguments

		
bauble.main_is_frozen()

		Return True if we are running in a py2exe environment, else
return False

		
bauble.quit()

		Stop all tasks and quit Bauble.

		
bauble.save_state()

		Save the gui state and preferences.

bauble.db

		
bauble.db.Base

		All tables/mappers in Bauble which use the SQLAlchemy declarative
plugin for declaring tables and mappers should derive from this
class.

An instance of sqlalchemy.ext.declarative.Base

		
bauble.db.metadata

		The default metadata for all Bauble tables.

An instance of sqlalchemy.schema.MetaData

bauble.connmgr

bauble.editor

bauble.i18n

The i18n module defines the _() function for creating translatable strings.

_() is added to the Python builtins so there is no reason to import
this module more than once in an application. It is usually imported
in bauble

bauble.ui

bauble.meta

bauble.paths

Access to standard paths used by Bauble.

		
bauble.paths.main_dir()

		Returns the path of the bauble executable.

		
bauble.paths.lib_dir()

		Returns the path of the bauble module.

		
bauble.paths.locale_dir()

		Returns the root path of the locale files

		
bauble.paths.user_dir()

		Returns the path to where Bauble settings should be saved.

bauble.pluginmgr

bauble.prefs

bauble.task

The bauble.task module allows you to queue up long running tasks. The
running tasks still block but allows the GUI to update.

		
bauble.task.queue(task)

		Run a task.

task should be a generator with side effects. it does not matter what it
yields, it is important that it does stop from time to time yielding
whatever it wants to, and causing the side effect it has to cause.

		
bauble.task.set_message(msg)

		A convenience function for setting a message on the
statusbar. Returns the message id

		
bauble.task.clear_messages()

		Clear all the messages from the statusbar that were set with
bauble.task.set_message()

bauble.types

bauble.utils

A common set of utility functions used throughout Bauble.

		
bauble.utils.find_dependent_tables(table, metadata=None)

		Return an iterator with all tables that depend on table. The
tables are returned in the order that they depend on each
other. For example you know that table[0] does not depend on
tables[1].

		Parameters:		
		table – The tables who dependencies we want to find

		metadata – The sqlalchemy.engine.MetaData object
that holds the tables to search through. If None then use
bauble.db.metadata

		
bauble.utils.tree_model_has(tree, value)

		Return True or False if value is in the tree.

		
bauble.utils.search_tree_model(parent, data, cmp=<function <lambda>>)

		Return a iterable of gtk.TreeIter instances to all occurences
of data in model

		Parameters:		
		parent – a gtk.TreeModel or a gtk.TreeModelRow instance

		data – the data to look for

		cmp – the function to call on each row to check if it matches
data, default is C{lambda row, data: row[0] == data}

		
bauble.utils.clear_model(obj_with_model)

		

		Parameters:		obj_with_model – a gtk Widget that has a gtk.TreeModel that
can be retrieved with obj_with_mode.get_model

Remove the model from the object, deletes all the items in the
model, clear the model and then delete the model and set the model
on the object to None

		
bauble.utils.combo_set_active_text(combo, value)

		does the same thing as set_combo_from_value but this looks more like a
GTK+ method

		
bauble.utils.set_combo_from_value(combo, value, cmp=<function <lambda>>)

		Find value in combo model and set it as active, else raise ValueError
cmp(row, value) is the a function to use for comparison

Note

if more than one value is found in the combo then the
first one in the list is set

		
bauble.utils.combo_get_value_iter(combo, value, cmp=<function <lambda>>)

		Returns a gtk.TreeIter that points to first matching value in the
combo’s model.

		Parameters:		
		combo – the combo where we should search

		value – the value to search for

		cmp – the method to use to compare rows in the combo model and value,
the default is C{lambda row, value: row[0] == value}

Note

if more than one value is found in the combo then the first one
in the list is returned

		
bauble.utils.set_widget_value(widget, value, markup=False, default=None, index=0)

		

		Parameters:		
		widget – an instance of gtk.Widget

		value – the value to put in the widget

		markup – whether or not value is markup

		default – the default value to put in the widget if the value is None

		index – the row index to use for those widgets who use a model

Note

any values passed in for widgets that expect a string will call
the values __str__ method

		
bauble.utils.create_message_dialog(msg, type=<enum GTK_MESSAGE_INFO of type GtkMessageType>, buttons=<enum GTK_BUTTONS_OK of type GtkButtonsType>, parent=None)

		Create a message dialog.

		Parameters:		
		msg – The markup to use for the message. The value should be
escaped in case it contains any HTML entities.

		type – A GTK message type constant. The default is gtk.MESSAGE_INFO.

		buttons – A GTK buttons type constant. The default is
gtk.BUTTONS_OK.

		parent – The parent window for the dialog

Returns a gtk.MessageDialog

		
bauble.utils.message_dialog(msg, type=<enum GTK_MESSAGE_INFO of type GtkMessageType>, buttons=<enum GTK_BUTTONS_OK of type GtkButtonsType>, parent=None)

		Create a message dialog with bauble.utils.create_message_dialog()
and run and destroy it.

Returns the dialog’s response.

		
bauble.utils.create_yes_no_dialog(msg, parent=None)

		Create a dialog with yes/no buttons.

		
bauble.utils.yes_no_dialog(msg, parent=None, yes_delay=-1)

		Create and run a yes/no dialog.

Return True if the dialog response equals gtk.RESPONSE_YES

		Parameters:		
		msg – the message to display in the dialog

		parent – the dialog’s parent

		yes_delay – the number of seconds before the yes button should
become sensitive

		
bauble.utils.create_message_details_dialog(msg, details, type=<enum GTK_MESSAGE_INFO of type GtkMessageType>, buttons=<enum GTK_BUTTONS_OK of type GtkButtonsType>, parent=None)

		Create a message dialog with a details expander.

		
bauble.utils.message_details_dialog(msg, details, type=<enum GTK_MESSAGE_INFO of type GtkMessageType>, buttons=<enum GTK_BUTTONS_OK of type GtkButtonsType>, parent=None)

		Create and run a message dialog with a details expander.

		
bauble.utils.setup_text_combobox(combo, values=None, cell_data_func=None)

		Configure a gtk.ComboBox as a text combobox

NOTE: If you pass a cell_data_func that is a method of an object that
holds a reference to combo then the object will not be properly
garbage collected. To avoid this problem either don’t pass a
method of object or make the method static

		Parameters:		
		combo – gtk.ComboBox

		values – list vales or gtk.ListStore

		cell_date_func –

		
bauble.utils.setup_date_button(view, entry, button, date_func=None)

		Associate a button with entry so that when the button is clicked a
date is inserted into the entry.

		Parameters:		
		view – a bauble.editor.GenericEditorView

		entry – the entry that the data goes into

		button – the button that enters the data in entry

		date_func – the function that returns a string represention
of the date

		
bauble.utils.to_unicode(obj, encoding='utf-8')

		Return obj converted to unicode. If obj is already a unicode
object it will not try to decode it to converted it to <encoding>
but will just return the original obj

		
bauble.utils.utf8(obj)

		This function is an alias for to_unicode(obj, ‘utf-8’)

		
bauble.utils.xml_safe(obj, encoding='utf-8')

		Return a string with character entities escaped safe for xml, if the
str parameter is a string a string is returned, if str is a unicode object
then a unicode object is returned

		
bauble.utils.xml_safe_utf8(obj)

		This method is deprecated and just returns xml_safe(obj)

		
bauble.utils.natsort_key(obj)

		a key getter for sort and sorted function

the sorting is done on return value of obj.__str__() so we can sort
objects as well, i don’t know if this will cause problems with unicode

use like: sorted(some_list, key=utils.natsort_key)

		
bauble.utils.delete_or_expunge(obj)

		If the object is in object_session(obj).new then expunge it from the
session. If not then session.delete it.

		
bauble.utils.reset_sequence(column)

		If column.sequence is not None or the column is an Integer and
column.autoincrement is true then reset the sequence for the next
available value for the column...if the column doesn’t have a
sequence then do nothing and return

The SQL statements are executed directly from db.engine

This function only works for PostgreSQL database. It does nothing
for other database engines.

		
bauble.utils.make_label_clickable(label, on_clicked, *args)

		

		Parameters:		
		label – a gtk.Label that has a gtk.EventBox as its parent

		on_clicked – callback to be called when the label is clicked
on_clicked(label, event, data)

		
bauble.utils.enum_values_str(col)

		

		Parameters:		col – a string if table.col where col is an enum type

return a string with of the values on an enum type join by a comma

		
bauble.utils.which(filename, path=None)

		Return first occurence of file on the path.

		
bauble.utils.ilike(col, val, engine=None)

		Return a cross platform ilike function.

		
bauble.utils.range_builder(text)

		Return a list of numbers from a string range of the form 1-3,4,5

		
bauble.utils.topological_sort(items, partial_order)

		Perform topological sort.

		Parameters:		
		items – a list of items to be sorted.

		partial_order – a list of pairs. If pair (a,b) is in it, it
means that item a should appear before item b. Returns a list of
the items in one of the possible orders, or None if partial_order
contains a loop.

		
bauble.utils.get_distinct_values(column, session)

		Return a list of all the distinct values in a table column

		
bauble.utils.get_invalid_columns(obj, ignore_columns=['id'])

		Return column names on a mapped object that have values
which aren’t valid for the model.

Invalid columns meet the following criteria:
- nullable columns with null values
- ...what else?

		
bauble.utils.get_urls(text)

		Return tuples of http/https links and labels for the links. To
label a link prefix it with [label text],
e.g. [BBG]http://belizebotanic.org

		
class bauble.utils.GenericMessageBox

		Bases: gtk.EventBox

Abstract class for showing a message box at the top of an editor.

		
class bauble.utils.MessageBox(msg=None, details=None)

		Bases: bauble.utils.GenericMessageBox

A MessageBox that can display a message label at the top of an editor.

		
class bauble.utils.YesNoMessageBox(msg=None, on_response=None)

		Bases: bauble.utils.GenericMessageBox

A message box that can present a Yes or No question to the user

		
bauble.utils.add_message_box(parent, type=1)

		

		Parameters:		
		parent – the parent gtk.Box width to add the
message box to

		type – one of MESSAGE_BOX_INFO, MESSAGE_BOX_ERROR or
MESSAGE_BOX_YESNO

bauble.view

		
class bauble.view.SearchView.ViewMeta

		

bauble.search

bauble.plugins.plants

bauble.plugins.garden

bauble.plugins.abcd

bauble.plugins.imex

bauble.plugins.report

bauble.plugins.report.xsl

bauble.plugins.report.mako

bauble.plugins.tag

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

it/tagging.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Tagging

Tagging is an easy way to give context to an object or create a
collection of object that you want to recall later. For example if you
want to collect a bunch of plants that you later want to create a
report from you can tag them with the string “for that report i was
thinking about”. You can then select “for that report i was thinking
about” from the tags menu to show you all the objects you tagged.

Tagging can be done two ways. By selecting one or more items in the
search results and pressing Ctrl-T or by selecting
Tag‣Tag Selection from the menu. If you have
selected multiple items then only that tags that are common to all the
selected items will have a check next to it.

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

es/report.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Generating reports

Using the Mako Report Formatter

The Mako report formatter uses the Mako template language for
generating reports. More information about Mako and its language can
be found at makotemplates.org [http://www.makotemplates.org].

The Mako templating system should already be installed on your
computer if Bauble is installed.

Creating reports with Mako is similar in the way that you would create
a web page from a template. It is much simpler than the XSL
Formatter(see below) and should be relatively easy to create template
for anyone with a little but of programming experience.

The template generator will use the same file extension as the
template which should indicate the type of output the template with
create. For example, to generate an HTML page from your template you
should name the template something like report.html. If the template
will generate a comma seperated value file you should name the
template report.csv.

The template will receive a variable called values which will
contain the list of values in the current search.

The type of each value in values will be the same as the search
domain used in the search query. For more information on search
domains see Domains.

If the query does not have a search domain then the values could all
be of a different type and the Mako template should prepared to handle
them.

Using the XSL Report Formatter

The XSL report formatter requires an XSL to PDF renderer to
convert the data to a PDF file. Apache FOP is is a free and
open-source XSL->PDF renderer and is recommended.

If using Linux, Apache FOP should be installable using your package
manager. On Debian/Ubuntu it is installable as fop in Synaptic or
using the following command:

apt-get install fop

Installing Apache FOP on Windows

You have two options for installing FOP on Windows. The easiest way is
to download the prebuilt ApacheFOP-0.95-1-setup.exe [http://code.google.com/p/apache-fop-installer/downloads/detail?name=ApacheFOP-0.95-1-setup.exe&can=2&q=#makechanges] installer.

Alternatively you can download the archive [http://www.apache.org/dist/xmlgraphics/fop/binaries/]. After
extracting the archive you must add the directory you extracted the
archive to to your PATH environment variable.

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

es/users.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Managing Users

Note

The Bauble users plugin is only available on PostgreSQL
based databases.

The Bauble User’s Plugin will allow you to create and manage the
permissions of users for your Bauble database.

Creating Users

To create a new user...

Permissions

Bauble allows read, write and execute permissions.

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

it/started.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Getting Started

Connecting to a database

When you start Bauble the first thing that comes up is the connection dialog.

[image: it/../web/images/screenshots/0.7/bauble-closed-conn-dialog-0.7.0.png]
From this dialog you can select the different connection parameters.

If this is the first time that you are starting Bauble then you will
not having any connections to choose from. Click on the add button to
create a new connection.

By default Bauble uses the file-based SQLite database. If you use the
default filename then Bauble creates a database file with the same
name as the connection in ~/.bauble on Linux or Application
Data\Bauble on Windows.

Bauble allows you to connect to any existing database. If you connect
to an empty database a message will popup asking asking you if you
would like to create a new database.

		TODO: If you are connecting to an existing database you can continue to Inserting or Searching

Creating a new database

To create a new database you have to first connect to a database. See
Connecting to a database.

If you are connecting using the default SQLite database backend then Bauble
can handler everything that needs to be done to create a new
database.

If you are connecting to a server based database like PostgreSQL [http://www.postgresql.org] will have to manually create the
database and permissions for the database while Bauble will create the
tables and import the default data set. Creating a database on
aserver based database is beyond the scope of this manual. If you just
got the chills or sick at your stomach I recommend you just stick with
SQLite.

If you have connected to a database that has not yet been initialized
by Bauble then you will get the following dialog:

[image: it/../web/images/screenshots/bauble-create-new-0.7.png]
Be careful because if you have entered the wrong connection parameters
it is possible to overwrite an existing database at this connection.

If you are sure you want to create a database at this connection then
select “Yes”. Bauble will then start creating the database tables and
importing the default data. This can take a minute or two so while all
of the default data is imported into the database so be patient.

XXX. TODO: Once the default database has been created then you are
ready to start inserting or searching...

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

_static/comment.png

_images/bauble-create-new-0.7.png
BaubIe

Would you like to create a new Bauble database at the current
connection?

Warning: If there s already a database at this connection any
existing data will be destroyed!

_static/comment-bright.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/down-pressed.png

it/users.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Managing Users

Note

The Bauble users plugin is only available on PostgreSQL
based databases.

The Bauble User’s Plugin will allow you to create and manage the
permissions of users for your Bauble database.

Creating Users

To create a new user...

Permissions

Bauble allows read, write and execute permissions.

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

_images/bauble-closed-conn-dialog-0.7.0.png
BaubIe

{»Bauble

biodiversity collection manager

test B

4 Add‘ ‘ = Emuve‘

D connection Details

_static/file.png

_static/minus.png

fr/installing.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Installation

bauble.classic is a cross-platform program and it will run on unix machines
like Linux and MacOSX, as well as on Windows.

To install Bauble first requires that you install its dependencies that
cannot be installed automatically. These include virtualenvwrapper, PyGTK
and pip. Python and GTK+, you probably already have. As long as you have
these packages installed then Bauble should be able to install the rest of
its dependencies by itself.

Note

If you follow these installation steps, you will end with Bauble
running within a Python virtual environment, all Python
dependencies installed locally, non conflicting with any other
Python program you may have on your system.

if you later choose to remove Bauble, you simply remove the
virtual environment, which is a directory, with all of its
content.

Installing on Linux

		Make sure your Python [http://www.python.org] version is 2.4
or greater, that you have the develompent environment for GTK+ [http://www.gtk.org] and that you have installed PyGTK [http://www.pygtk.org] using your package manager (ubuntu,
debian: python-gtk2).

		Download and extract the Bauble source package from

https://github.com/mfrasca/bauble.classic.git

		Make and activate a virtual environment with
--system-site-packages.

		If you would like to use the default SQLite [http://sqlite.org/] database or you don’t know what this means
then you can skip this step. If you would like to use a database
backend other than the default SQLite backend then you will also
need to install a database connector.

If you would like to use a PostgreSQL [http://www.postgresql.org]
database then install psycopg2 with the following commands:

pip install -U psycopg2

		In the installation directory execute the following command:

python setup.py install

If this doesn’t complete successfully see Troubleshooting the Install.

		Any time you want to run Bauble, open a terminal window, activate
the virtual environment and execute the bauble command.

Next...

Connecting to a database.

Installing on MacOSX

Being MacOSX a unix environment, most stuff should work just like in
Linux, but we’ve never tried. Feedback highly welcome.

Next...

Connecting to a database.

Installing on Windows

The Windows installer used to be a “batteries-included” installer,
installing everything needed to run Bauble. The current maintainer
of bauble.classic cannot run Windows applications. If you want to
run the latest version of bauble on Windows: download and install
the dependencies and then install Bauble from the source package.

Please report any trouble and help with packaging will be very
welcome.

Note

Bauble has been tested with and is known to work on
Windows XP and Windows-8. Although it should work fine on other
versions Windows it has not been thoroughly tested.

the installation steps on Windows:

		Install GTK+. The easiest way to install GTK+ is to download the
latest runtime packages from gtk-win.sourceforge.net [http://gtk-win.sourceforge.net/home/index.php/Downloads].

Note

The gtk-win package currently doesn’t support SVG which can
cause a problem with Bauble.

There is also a script in the Bauble source archive in
scripts/install_gtk.py which will download the GTK+ Win32
installer. This will also download and install the SVG pixbuf
loader for GTK+.

		download and install Python 2.x (32bit) from:

http://www.python.org

Bauble has been developed and tested using Python 2.x. It will
definitely not run on Python 3.x. If you are interested in helping
port to Python 3.x, please contact the Bauble maintainers.

		download and install pygtk (requires 32bit python) from:

http://ftp.gnome.org/pub/GNOME/binaries/win32/pygtk/

		download and install pip from:

http://bootstrap.pypa.io/get-pip.py

		download and install git (comes with a unix-like sh).

		install virtualenvwrapper-win (using pip)

		create the virtual environment now.

		download gettext from:

http://www.boost.org/doc/libs/1_56_0/libs/locale/doc/html/gettext_for_windows.html

You will need manually unpack the statically linked binaries,
Windows will probably complain about the risks of unpacking a zip
archive that contains executable files, ignore this. A safe place
to put the executable files is into the Scripts directory of
the virtual environment.

		(optional) download and install a database connector other than
sqlite3. TODO: still don’t know how to do this for
psycopg2. On Windows, pip does not manage install it.

		download the bauble.classic sources (using git) from:
http://www.github.com/mfrasca/bauble.classic/

		activate the virtual environment.

		python setup.py install

		TODO: write a git-shell script that activates the virtual
environment, sets the language, invokes bauble.

		TODO: put the above git-shell script at a convenient place.

If you would like to generate and print PDF reports using Bauble’s
default report generator then you will need to download and install
Apache FOP [http://xmlgraphics.apache.org/fop/]. After extracting
the FOP archive you will need to include the directory you extracted
to in your PATH.

Next...

Connecting to a database.

Troubleshooting the Install

		What are the packages that are installed by Bauble:

The following packages are required by Bauble

		SQLAlchemy

		lxml

The following packages are optional:

		Mako - required by the template based report generator

		gdata - required by the Picasa photos InfoBox

		Couldn’t install lxml.

The lxml packages have to be compile with a C compiler. If you
don’t have a Make sure the libxml and libxsl packages are
installed. Installing the Cython packages. On Linux you will
have to install the gcc package. On Windows there should be a
precompiled version available at
http://pypi.python.org/pypi/lxml/2.1.1

		Couldn’t install gdata.

For some reason the Google’s gdata package lists itself in the
Python Package Index but doesn’t work properly with the
easy_install command. You can download the latest gdata package
from:

http://code.google.com/p/gdata-python-client/downloads/list

Unzip it and run ``python setup.py installw` in the folder you unzip it to.

Next...

Connecting to a database.

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

fr/searching.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Searching in Bauble

Searching allows you to view, browse and create reports from your
data. You can perform searches by either entering the queries in the
main search entry or by using the Query Builder to create the queries
for you. The results of Bauble searches are listed in the main window.

The Query Builder

The Query Builder can help you build complex search queries through a
point and click interface. To open the Query Builder click the to the
left of the search entry or select Tools‣Query
Builder from the menu.

After opening the Query Builder you must select a search domain. The
search domain will determine the type of data that is returned and the
properties that you can search. The search domain is similar to a
table in the database and the properties would be the columns on the
table. Often the table/domain and properties/columns are the same but
not always.

Once a search domain is selected you can then select a property of the
domain to compare values to. The search operator can then be changed
for how you want to make the search comparison. Finally you must
enter a value to compare to the search property. If the search
property you have selected can only have specific values then a list
of possible values will be provided for you to choose from.

If multiple search properties are necessary then clicking on the plus
sign will add more search properties. Select And/Or next to the
property name choose how the properties will be combined in the search
query.

When you are done building your query click OK to perform the search.

The Query Language

Three are three types of search queries available in Bauble. You can
search by value, expression or query.

All searches are case insensitive so searching for Maxillaria and
maxillaria will return the same results.

Search by Value

Search by value is the simplest way to search. You just type in a
string and see what matches. Which fields/columns are search for your
string depends on how the different plugins are configured. For
example, by default the PlantPlugin search the family name, the genus
name, the species and infraspecific species names, vernacular names
and geography. So if you want to search in the notes field of any of
these types then searching by value is not the search you’re looking
for.

Examples of searching by value would be: Maxillaria, Acanth,
2008.1234, 2003.2.1

Search string are separated by spaces. For example if you enter the
search string Block 10 then Bauble will search for the strings Block
and 10 and return all the results that match either of these
strings. If you want to search for Block 10 as a while string then you
should quote the string like "Block 10".

Search by Expression

Searching with expression gives you a little more control over what
you are searching for. It can narrow the search down to a specific
domain. Expression consist of a domain, an operator and a value. For
example the search: gen=Maxillaria would return all the genera that
match the name Maxillaria. In this case the domain is gen, the
operator is = and the value is Maxillaria.

The search string gen like max% would return all the genera whose
names start with “Max”. In this case the domain again is gen, the
operator is like, which allows for “fuzzy” searching and the value is
max%. The percent sign is used as a wild card so if you search for
max% then it search for all value that start with max. If you search
for %max it searches for all values that end in max. The string %max%a
would search for all value that contain max and end in a.

For more information about the different search domain and their short-hand
aliases, see search-domains .

If expression are invalid they are usually used as search by value
searchs. For example the search string gen= will execute a search by
value for the string gen and the search string gen like will search
for the string gen and the string like.

Search by Query

Queries allow the most control over searching. With queries you can
search across relations, specific columns and join search using
boolean operators like AND and OR.

		An example of a query would be:

		plant where accession.species.genus.family=Fabaceae and location.site="Block 10"

This query would return all the plants whose family are Fabaceae and
are located in Block 10.

Searching with queries usually requires some knowledge of the Bauble
internals and database table layouts.

A couple of useful examples:

Which locations are in use:
location where plants.id!=0

Which genera are associated to at least one accession:
genus where species.accession.id!=0

Domains

The following are the common search domain and the columns they search
by default. The default columns are used when searching by value and
expression. The queries do not use the default columns.

		Domains:		family, fam: Search bauble.plugins.plants.Family

genus, gen: Search bauble.plugins.plants.Genus

species, sp: Search bauble.plugins.plants.Species

geography: Search bauble.plugins.plants.Geography

acc: Search bauble.plugins.garden.Accession

plant: Search bauble.plugins.garden.Plant

location, loc: Search bauble.plugins.garden.Location

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

_static/down.png

fr/devdl.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Downloading the source

The Bauble source can be downloaded from our source
repository on github [http://github.com/mfrasca/bauble.classic].

We do not currently release a specially quality checked Bauble version,
all of our commits to the Master branch are equally quality checked.

To check out the most recent code from the source repository you will need
to install the Git [http://www.git.org] version control system. Git is
incuded in all reasonable Linux distributions and can be installed on all
current operating systems.

Once you have installed Git you can checkout the latest Bauble code with
the following command:

git clone https://github.com/mfrasca/bauble.classic.git

For more information about other available code branches go to
bauble.classic on github [http://www.github.com/Bauble/bauble.classic].

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

fr/started.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Getting Started

Connecting to a database

When you start Bauble the first thing that comes up is the connection dialog.

[image: fr/../web/images/screenshots/0.7/bauble-closed-conn-dialog-0.7.0.png]
From this dialog you can select the different connection parameters.

If this is the first time that you are starting Bauble then you will
not having any connections to choose from. Click on the add button to
create a new connection.

By default Bauble uses the file-based SQLite database. If you use the
default filename then Bauble creates a database file with the same
name as the connection in ~/.bauble on Linux or Application
Data\Bauble on Windows.

Bauble allows you to connect to any existing database. If you connect
to an empty database a message will popup asking asking you if you
would like to create a new database.

		TODO: If you are connecting to an existing database you can continue to Inserting or Searching

Creating a new database

To create a new database you have to first connect to a database. See
Connecting to a database.

If you are connecting using the default SQLite database backend then Bauble
can handler everything that needs to be done to create a new
database.

If you are connecting to a server based database like PostgreSQL [http://www.postgresql.org] will have to manually create the
database and permissions for the database while Bauble will create the
tables and import the default data set. Creating a database on
aserver based database is beyond the scope of this manual. If you just
got the chills or sick at your stomach I recommend you just stick with
SQLite.

If you have connected to a database that has not yet been initialized
by Bauble then you will get the following dialog:

[image: fr/../web/images/screenshots/bauble-create-new-0.7.png]
Be careful because if you have entered the wrong connection parameters
it is possible to overwrite an existing database at this connection.

If you are sure you want to create a database at this connection then
select “Yes”. Bauble will then start creating the database tables and
importing the default data. This can take a minute or two so while all
of the default data is imported into the database so be patient.

XXX. TODO: Once the default database has been created then you are
ready to start inserting or searching...

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

fr/imex.html

 Navigation

 		
 index

 		
 modules |

 		Bauble 1.0 documentation »

Importing and Exporting Data

Although Bauble can be extended through plugins to support alternate
import and export formats, by default it can only import and export
comma seperated values files or CSV.

There is some support for exporting to the Access for Biological
Collections Data it is limited.

There is also limited support for exporting to an XML format that more
or less reflects exactly the tables and row of the database.

Exporting ABCD and XML will not be covered here.

Warning

Importing files will most likely destroy any data you
have in the database so make sure you have backed up your data.

Importing from CSV

In general it is best to only import CSV files into Bauble that were
previously exported from Bauble. It is possible to import any CSV file
but that is more advanced that this doc will cover.

To import CSV files into Bauble select
Tools‣Export‣Comma Seperated Values from the
menu.

After clicking OK on the dialog that ask if you are sure you know what
you’re doing a file chooser will open. In the file chooser select the
files you want to import.

Exporting to CSV

To export the Bauble data to CSV select
Tools‣Export‣Comma Seperated Values from the menu.

This tool will ask you to select a directory to export the CSV data.
All of the tables in Bauble will be exported to files in the format
tablename.txt where tablename is the name of the table where the data
was exported from.

 © Copyright 2008,2009.
 Last updated on Jul 10, 2015.
 Created using Sphinx 1.3.1.

